Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36080471

RESUMO

To take advantage of the residues generated in the production of products from green coffee and due to the special interest in the compounds contained in the bean, a by-product obtained after the extraction of the oil was studied. The physical characterization of the green-coffee-bean by-product was carried out. Subsequently, the extraction of compound 5-CQA was carried out via leaching using central composition design 24 and evaluating factors such as temperature, time, solid/solvent ratio, and ethanol percentage, and its yield was quantified using HPLC. In addition, the response-surface methodology was used to maximize the efficiency of 5-CQA extraction and to perform the kinetic study. Yields of 59 ± 2 mg of 5-CQA/g from the by-product were obtained, and by selecting the best leaching conditions, the kinetic study was performed at 45, 60, and 75 °C, increasing the yield to a total of 61.8 ± 3 mg of 5-CQA/g. By applying the kinetic model of mass transfer, a fit of R2 > 0.97 was obtained, with KLa values between 0.266 and 0.320 min−1. This study showed an approach to optimize the 5-CQA extraction conditions, resulting in a simple, fast, reproducible, accurate, and low-cost method.


Assuntos
Coffea , Cromatografia Líquida de Alta Pressão , Coffea/química , Café/química , Cinética , Extratos Vegetais/química
2.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500793

RESUMO

The hyaluronic acid (HA) global market growth can be attributed to its use in medical, cosmetic, and pharmaceutical applications; thus, it is important to have validated, analytical methods to ensure confidence and security of its use (and to save time and resources). In this work, a size-exclusion chromatography method (HPLC-SEC) was validated to determine the concentration and molecular distribution of HA simultaneously. Analytical curves were developed for concentration and molecular weight in the ranges of 100-1000 mg/L and 0.011-2.200 MDa, respectively. The HPLC-SEC method showed repeatability and reproducibility greater than 98% and limits of detection and quantification of 12 and 42 mg/L, respectively, and was successfully applied to the analysis of HA from a bacterial culture, as well as cosmetic, and pharmaceutical products.


Assuntos
Cromatografia em Gel , Ácido Hialurônico/análise , Peso Molecular , Tamanho da Partícula
3.
Artigo em Inglês | MEDLINE | ID: mdl-38180724

RESUMO

Mango processing generates significant amounts of residues (35-65%) that may represent environmental problems owed to improper disposal. The use of mango byproducts as substrates to produce hyaluronic acid (HA) is an attractive alternative to reduce the cost of substrate. In this study, we evaluated the potential of hydrolyzates from mango peels and seeds to produce HA by Streptococcus equi. subsp. zooepidemicus. The physicochemical characterization of mango residues showed that the seeds contain a higher amount of holocellulose (cellulose and hemicellulose), which amounts 54.2% (w/w) whereas it only represents 15.5% (w/w) in the peels. Mango peels, however, are composed mainly of hot water-extractives (62% w/w, that include sucrose, fructose, glucose and organic acids). A higher concentration of monosaccharides (39.8 g/L) was obtained from the enzymatic hydrolysis (with Macerex) of peels as compared to seeds (24.8 g/L with Celuzyme). From mango peels, hydrolyzates were obtained 0.6 g/L HA, while 0.9 g/L HA were obtained with hydrolyzates from mango seeds. These results demonstrate that mango byproducts have the potential to be used for production of HA.

4.
Membranes (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736282

RESUMO

The objective of this work was to evaluate the effect of operating conditions and fructans size distribution on the tight Ultrafiltration process for agave fructans fractionation. A mathematical model of limiting mass flux transfer was used to represent the profile of concentrations over time at the outlet of a pilot scale ultrafiltration system. First, a Box-Behnken experimental design was performed for the optimization of the parameters that determine the operating conditions in their respective ranges: temperature, 30−60 °C; transmembrane pressure (TMP), 1−5 bar and feed concentration, 50−150 kg∙m−3, on the separation factor (SF) and permeate flux. Then, the validation of the model for different fructans size distribution was carried out. The results showed that for SF, the quadratic terms of temperature, TMP and feed concentration were the most significant factors. Statistical analysis revealed that the temperature-concentration interaction has a significant effect (p < 0.005) and that the optimal conditions were: 46.81 °C, 3.27 bar and 85.70 kg∙m−3. The optimized parameters were used to validate the hydrodynamic model; the adjustments conclude that the model, although simplified, is capable of correctly reproducing the experimental data of agave fructans fractionation by a tight ultrafiltration pilot unit. The fractionation process is favored at higher proportions of FOS:Fc in native agave fructans.

5.
Food Chem ; 197(Pt A): 747-53, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26617012

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of significant interest due to their genotoxicity in humans. PAHs quantification in coffee is complex since some of its compounds interfere in the chromatographic analysis, which hinders the reliable determination of the PAHs. Analytical conditions for the ultrasound extraction, purification and quantification of 16 PAHs in roasted coffee were studied. The better extraction efficiency of benzo[a]pyrene (68%) from ground-roasted coffee was achieved with a solvent ratio of Hex:MC (9:1 v/v) and three extraction periods of 20 min, followed by alkaline saponification and purification of the extracts. The detection limits were 0.85-39.32 ng mL(-1), and the quantification limits from 2.84 to 131.05 ng mL(-1), obtained for fluoranthene and chrysene, respectively. The extraction was effective for most of the analytes, with recoveries of 39.8% dibenzo[ah]anthracene and 69.0% benzo[b]fluoranthene. For coffee roasted in a spouted bed reactor, the summation of the 16 PAHs ranged from 3.5 to 16.4 µg kg(-1).


Assuntos
Café/química , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzo(a)pireno/análise , Crisenos/análise , Fluorenos/análise , Análise de Alimentos/instrumentação , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA