Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212700

RESUMO

Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.

2.
Biol Pharm Bull ; 47(5): 1054-1057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38811191

RESUMO

Glycosaminoglycans (GAGs), such as heparan sulfate (HS), play essential roles in living organisms. Understanding the functionality of HS and its involvement in disease progression necessitates the sensitive and quantitative detection of HS-derived unsaturated disaccharides. Conventionally, fluorescence derivatization precedes the HPLC analysis of these disaccharides. However, the presence of excess unreacted derivatization reagents can inhibit rapid and sensitive analysis in chromatographic determinations. In this study, we describe analytical methods that use dansylhydrazine as a derivatization agent for the detection and determination of HS-derived unsaturated disaccharides using HPLC. In addition, we have developed a straightforward method for removing excess unreacted reagent using a MonoSpin NH2 column. This method may be employed to remove excess pre-labeling reagents, thereby facilitating the analysis of HS-derived unsaturated disaccharides with satisfactory reproducibility.


Assuntos
Compostos de Dansil , Dissacarídeos , Heparitina Sulfato , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/química , Heparitina Sulfato/análise , Dissacarídeos/análise , Compostos de Dansil/química , Hidrazinas/química , Espectrometria de Fluorescência/métodos , Fluorescência
3.
Sci Rep ; 8(1): 2950, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440726

RESUMO

Amide bond formation serves as a fundamental reaction in chemistry, and is practically useful for the synthesis of peptides, food additives, and polymers. However, current methods for amide bond formation essentially generate wastes and suffer from poor atom economy under harsh conditions. To solve these issues, we demonstrated an alternative synthesis method for diverse tryptophyl-N-alkylamides by the combination of the first adenylation domain of tyrocidine synthetase 1 with primary or secondary amines as nucleophiles. Moreover, the physiological role of this domain is L-phenylalanine adenylation; however, we revealed that it displayed broad substrate flexibility from mono-substituted tryptophan analogues to even D-tryptophan. To the best of our knowledge, this is the first evidence for an adenylating enzyme-mediated direct amide bond formation via a sequential enzymatic activation of amino acids followed by nucleophilic substitution by general amines. These findings facilitate the design of a promising tool for biocatalytic straightforward amide bond formation with less side products.


Assuntos
Monofosfato de Adenosina/metabolismo , Amidas/química , Peptídeo Sintases/metabolismo , Fenilalanina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA