Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 163: 112264, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596175

RESUMO

To understand the encapsulation difference and stability mechanism of nanoliposomes (NLPs) loaded with different kinds and loads of liposoluble vitamins (LSV, including VA, VD, VE, and VK), the physicochemical stability during three-months storage and bilayer membrane properties of LSV-NLPs were evaluated. The results suggested that VD and VE were not suitable for high-load (≥30 wt%) encapsulation, but the stability of other LSV-NLPs was excellent during storage. Their particle size was less than 100 nm, the polydispersity index was less than 0.3, and the retention rate of VE and VK remained above 85 %. LSV encapsulation inhibited malondialdehyde production, decreased liposome surface roughness, and improved nanoliposome rigidity. The order of occupying capacity of LSV to the hydrophobic zone of the bilayer was VK>VD>VE>VA, and the stability of LSV located in the hydrophobic region was better. Except for high-load VD and VE, the other LSV encapsulation increased the microviscosity of the lipid-water interface and hydrophobic zone by 0.5 âˆ¼ 7.1 times and 0.5 âˆ¼ 20 times, respectively. The accumulation of acyl chain was enhanced by 0.2 âˆ¼ 4 times, and the interchain longitudinal and intra-chain transverse order degree was increased by 10.89 %∼144.35 % and 3.26 %∼115.52 %, respectively. High microviscosity and tight chain stacking limited bilayer fluidity and thus improve LSV-NLPs stability. This work will contribute to the application of nanoliposomes as liposoluble vitamin carriers in the food industry.


Assuntos
Lipossomos , Vitaminas , Lipossomos/química , Vitamina A , Vitamina K
2.
Food Chem ; 403: 134381, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358069

RESUMO

In the present study, the inhibition of fishy off-flavor and destabilization in algae oil-loaded emulsions by tannic acid (TA) adsorption on octenyl succinic anhydride (OSA) starch interfaces were investigated. The changes of typical fishy off-flavor components in the emulsion, physiochemical stability, and interaction between TA and OSA starch were analyzed. The TA fortification significantly prevented the production of fishy smell-related volatile components such as heptanal and (E, E)-3, 5-octadiene-2-one. The proportion of TA on the interface was more than 90 %, forming an interfacial film with the antioxidant function. The emulsions stabilized by OSA starch-TA complexes had better oxidative and physical stability. The isothermal titration calorimetry suggested that the interaction between OSA starch and TA included hydrogen bonding and van der Waals forces (ΔG = -13.272 kJ·mol-1·K-1, ΔH = -1.302 × 103 kJ·mol-1, ΔS = -4.326 kJ·mol-1·K-1). Altogether, these results provided application guidance for developing starch-based oil-in-water emulsion systems with antioxidant properties.


Assuntos
Antioxidantes , Taninos , Emulsões/química , Taninos/química , Amido/química
3.
Food Chem ; 426: 136560, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321118

RESUMO

In order to further clarify the regulation of tannic acid on the off-flavor in starch-based algal oil emulsions, the effect of different starch matrix (OSA starch and OSA starch-tannic acid complex) on the release capacities of aldehydes (pentanal, hexanal, heptanal, nonanal) were investigated. The adsorption and retention ability, thermodynamic parameters, and hydrophobicity of aldehydes in the starch matrix were analyzed. Nonanal exhibited the strongest adsorption ability (65.01%-85.69%) with the starch matrix, followed by heptanal, hexanal, and pentanal, which accounted for the structures of aldehydes. Furthermore, aldehydes had a higher affinity with complex (16.33%-83.67%) than OSA starch (9.70%-66.71%) because the tannic acid altered the structure of OSA starch. Isothermal titration calorimetry suggested that the interaction between the starch matrix and aldehydes was an entropy-driven spontaneous endothermic reaction, and hydrophobic interactions were the predominant driving forces. Altogether, these results lay a theoretical foundation for facilitating the regulation of flavor in starch foods.


Assuntos
Aldeídos , Amido , Aldeídos/química , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA