Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
2.
Adv Exp Med Biol ; 1359: 87-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35471536

RESUMO

Recent evidence suggests that glial cells take an active role in a number of brain functions that were previously attributed solely to neurons. For example, astrocytes, one type of glial cells, have been shown to promote coordinated activation of neuronal networks, modulate sensory-evoked neuronal network activity, and influence brain state transitions during development. This reinforces the idea that astrocytes not only provide the "housekeeping" for the neurons, but that they also play a vital role in supporting and expanding the functions of brain circuits and networks. Despite this accumulated knowledge, the field of computational neuroscience has mostly focused on modeling neuronal functions, ignoring the glial cells and the interactions they have with the neurons. In this chapter, we introduce the biology of neuron-glia interactions, summarize the existing computational models and tools, and emphasize the glial properties that may be important in modeling brain functions in the future.


Assuntos
Neuroglia , Neurociências , Astrócitos , Encéfalo/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia
3.
PLoS Comput Biol ; 16(11): e1008360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170856

RESUMO

Astrocytes have been shown to modulate synaptic transmission and plasticity in specific cortical synapses, but our understanding of the underlying molecular and cellular mechanisms remains limited. Here we present a new biophysicochemical model of a somatosensory cortical layer 4 to layer 2/3 synapse to study the role of astrocytes in spike-timing-dependent long-term depression (t-LTD) in vivo. By applying the synapse model and electrophysiological data recorded from rodent somatosensory cortex, we show that a signal from a postsynaptic neuron, orchestrated by endocannabinoids, astrocytic calcium signaling, and presynaptic N-methyl-D-aspartate receptors coupled with calcineurin signaling, induces t-LTD which is sensitive to the temporal difference between post- and presynaptic firing. We predict for the first time the dynamics of astrocyte-mediated molecular mechanisms underlying t-LTD and link complex biochemical networks at presynaptic, postsynaptic, and astrocytic sites to the time window of t-LTD induction. During t-LTD a single astrocyte acts as a delay factor for fast neuronal activity and integrates fast neuronal sensory processing with slow non-neuronal processing to modulate synaptic properties in the brain. Our results suggest that astrocytes play a critical role in synaptic computation during postnatal development and are of paramount importance in guiding the development of brain circuit functions, learning and memory.


Assuntos
Astrócitos/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Modelos Neurológicos , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Biologia Computacional , Simulação por Computador , Ácido Glutâmico/fisiologia , Humanos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Transmissão Sináptica/fisiologia
4.
Neurochem Res ; 41(4): 731-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26518675

RESUMO

Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.


Assuntos
Colesterol/farmacologia , Estradiol/farmacologia , Neurônios/efeitos dos fármacos , Tretinoína/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/ultraestrutura , Neuroblastoma , Neurônios/citologia , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
5.
Curr Opin Neurobiol ; 85: 102838, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310660

RESUMO

Glial cells have been shown to be vital for various brain functions, including homeostasis, information processing, and cognition. Over the past 30 years, various signaling interactions between neuronal and glial cells have been shown to underlie these functions. This review summarizes the interactions, particularly between neurons and astrocytes, which are types of glial cells. Some of the interactions remain controversial in part due to the nature of experimental methods and preparations used. Based on the accumulated data, computational models of the neuron-astrocyte interactions have been developed to explain the complex functions of astrocytes in neural circuits and to test conflicting hypotheses. This review presents the most significant recent models, modeling methods and simulation tools for neuron-astrocyte interactions. In the future, we will especially need more experimental research on awake animals in vivo and new computational models of neuron-glia interactions to advance our understanding of cellular dynamics and the functioning of neural circuits in different brain regions.


Assuntos
Neurônios , Transdução de Sinais , Animais , Neurônios/fisiologia , Astrócitos/fisiologia , Sinapses/fisiologia , Simulação por Computador
6.
Neuroinformatics ; 21(2): 375-406, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36959372

RESUMO

Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.


Assuntos
Astrócitos , Modelos Neurológicos , Astrócitos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Redes Neurais de Computação
7.
Sci Rep ; 13(1): 6451, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081004

RESUMO

Functional magnetic resonance imaging relies on the coupling between neuronal and vascular activity, but the mechanisms behind this coupling are still under discussion. Recent experimental evidence suggests that calcium signaling may play a significant role in neurovascular coupling. However, it is still controversial where this calcium signal is located (in neurons or elsewhere), how it operates and how relevant is its role. In this paper we introduce a biologically plausible model of the neurovascular coupling and we show that calcium signaling in astrocytes can explain main aspects of the dynamics of the coupling. We find that calcium signaling can explain so-far unrelated features such as the linear and non-linear regimes, the negative vascular response (undershoot) and the emergence of a (calcium-driven) Hemodynamic Response Function. These features are reproduced here for the first time by a single model of the detailed neuronal-astrocyte-vascular pathway. Furthermore, we analyze how information is coded and transmitted from the neuronal to the vascular system and we predict that frequency modulation of astrocytic calcium dynamics plays a key role in this process. Finally, our work provides a framework to link neuronal activity to the BOLD signal, and vice-versa, where neuronal activity can be inferred from the BOLD signal. This opens new ways to link known alterations of astrocytic calcium signaling in neurodegenerative diseases (e.g. Alzheimer's and Parkinson's diseases) with detectable changes in the neurovascular coupling.


Assuntos
Cálcio , Acoplamento Neurovascular , Cálcio/metabolismo , Astrócitos/metabolismo , Acoplamento Neurovascular/fisiologia , Neurônios/metabolismo , Hemodinâmica , Imageamento por Ressonância Magnética/métodos , Cálcio da Dieta/metabolismo , Circulação Cerebrovascular/fisiologia , Encéfalo/fisiologia
8.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398070

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modelling of post-synaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from post-mortem mRNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in anterior cingulate cortex, lead to impaired PKA-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped EEG dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials (VEP) were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35617183

RESUMO

Embedding nonlinear dynamical systems into artificial neural networks is a powerful new formalism for machine learning. By parameterizing ordinary differential equations (ODEs) as neural network layers, these Neural ODEs are memory-efficient to train, process time series naturally, and incorporate knowledge of physical systems into deep learning (DL) models. However, the practical applications of Neural ODEs are limited due to long inference times because the outputs of the embedded ODE layers are computed numerically with differential equation solvers that can be computationally demanding. Here, we show that mathematical model order reduction (MOR) methods can be used for compressing and accelerating Neural ODEs by accurately simulating the continuous nonlinear dynamics in low-dimensional subspaces. We implement our novel compression method by developing Neural ODEs that integrate the necessary subspace-projection and interpolation operations as layers of the neural network. We validate our approach by comparing it to neuron pruning and singular value decomposition (SVD)-based weight truncation methods from the literature in image and time-series classification tasks. The methods are evaluated by acceleration versus accuracy when adjusting the level of compression. On this spectrum, we achieve a favorable balance over existing methods by using MOR when compressing a convolutional Neural ODE. In compressing a recurrent Neural ODE, SVD-based weight truncation yields good performance. Based on our results, our integration of MOR with Neural ODEs can facilitate efficient, dynamical system-driven DL in resource-constrained applications.

10.
Elife ; 112022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792600

RESUMO

Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales.


Assuntos
Neurociências , Fluxo de Trabalho
11.
BMC Bioinformatics ; 12: 252, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21693049

RESUMO

BACKGROUND: Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. RESULTS: We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and ß isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. CONCLUSIONS: We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.


Assuntos
Simulação por Computador , Transdução de Sinais , Algoritmos , Modelos Biológicos , Método de Monte Carlo , Proteínas Quinases/análise
12.
PLoS Comput Biol ; 4(2): e1000004, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18463700

RESUMO

Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest possible way. The well-established Hodgkin-Huxley formalism has formed to a large extent the basis for building biophysically and anatomically detailed models of neurons. However, the deterministic Hodgkin-Huxley formalism does not take into account the stochastic behavior of voltage-dependent ion channels. Ion channel stochasticity is shown to be important in adjusting the transmembrane voltage dynamics at or close to the threshold of action potential firing, at the very least in small neurons. In order to achieve a better understanding of the dynamic behavior of a neuron, a new modeling and simulation approach based on stochastic differential equations and Brownian motion is developed. The basis of the work is a deterministic one-compartmental multi-conductance model of the cerebellar granule cell. This model includes six different types of voltage-dependent conductances described by Hodgkin-Huxley formalism and simple calcium dynamics. A new model for the granule cell is developed by incorporating stochasticity inherently present in the ion channel function into the gating variables of conductances. With the new stochastic model, the irregular electrophysiological activity of an in vitro granule cell is reproduced accurately, with the same parameter values for which the membrane potential of the original deterministic model exhibits regular behavior. The irregular electrophysiological activity includes experimentally observed random subthreshold oscillations, occasional spontaneous spikes, and clusters of action potentials. As a conclusion, the new stochastic differential equation model of the cerebellar granule cell excitability is found to expand the range of dynamics in comparison to the original deterministic model. Inclusion of stochastic elements in the operation of voltage-dependent conductances should thus be emphasized more in modeling the dynamic behavior of small neurons. Furthermore, the presented approach is valuable in providing faster computation times compared to the Markov chain type of modeling approaches and more sophisticated theoretical analysis tools compared to previously presented stochastic modeling approaches.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Estatísticos , Processos Estocásticos
13.
Front Cell Neurosci ; 13: 377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555093

RESUMO

Spontaneous network activity plays a fundamental role in the formation of functional networks during early development. The landmark of this activity is the recurrent emergence of intensive time-limited network bursts (NBs) rapidly spreading across the entire dissociated culture in vitro. The main excitatory mediators of NBs are glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-Methyl-D-aspartic-acid receptors (NMDARs) that express fast and slow ion channel kinetics, respectively. The fast inhibition of the activity is mediated through gamma-aminobutyric acid type A receptors (GABAARs). Although the AMPAR, NMDAR and GABAAR kinetics have been biophysically characterized in detail at the monosynaptic level in a variety of brain areas, the unique features of NBs emerging from the kinetics and the complex interplay of these receptors are not well understood. The goal of this study is to analyze the contribution of fast GABAARs on AMPAR- and NMDAR- mediated spontaneous NB activity in dissociated neonatal rat cortical cultures at 3 weeks in vitro. The networks were probed by both acute and gradual application of each excitatory receptor antagonist and combinations of acute excitatory and inhibitory receptor antagonists. At the same time, the extracellular network-wide activity was recorded with microelectrode arrays (MEAs). We analyzed the characteristic NB measures extracted from NB rate profiles and the distributions of interspike intervals, interburst intervals, and electrode recruitment time as well as the similarity of spatio-temporal patterns of network activity under different receptor antagonists. We show that NBs were rapidly initiated and recruited as well as diversely propagated by AMPARs and temporally and spatially maintained by NMDARs. GABAARs reduced the spiking frequency in AMPAR-mediated networks and dampened the termination of NBs in NMDAR-mediated networks as well as slowed down the recruitment of activity in all networks. Finally, we show characteristic super bursts composed of slow NBs with highly repetitive spatio-temporal patterns in gradually AMPAR blocked networks. To the best of our knowledge, this study is the first to unravel in detail how the three main mediators of synaptic transmission uniquely shape the NB characteristics, such as the initiation, maintenance, recruitment and termination of NBs in cortical cell cultures in vitro.

14.
Front Psychiatry ; 10: 534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440172

RESUMO

The brain is the most complex of human organs, and the pathophysiology underlying abnormal brain function in psychiatric disorders is largely unknown. Despite the rapid development of diagnostic tools and treatments in most areas of medicine, our understanding of mental disorders and their treatment has made limited progress during the last decades. While recent advances in genetics and neuroscience have a large potential, the complexity and multidimensionality of the brain processes hinder the discovery of disease mechanisms that would link genetic findings to clinical symptoms and behavior. This applies also to schizophrenia, for which genome-wide association studies have identified a large number of genetic risk loci, spanning hundreds of genes with diverse functionalities. Importantly, the multitude of the associated variants and their prevalence in the healthy population limit the potential of a reductionist functional genetics approach as a stand-alone solution to discover the disease pathology. In this review, we outline the key concepts of a "biophysical psychiatry," an approach that employs large-scale mechanistic, biophysics-founded computational modelling to increase transdisciplinary understanding of the pathophysiology and strive toward robust predictions. We discuss recent scientific advances that allow a synthesis of previously disparate fields of psychiatry, neurophysiology, functional genomics, and computational modelling to tackle open questions regarding the pathophysiology of heritable mental disorders. We argue that the complexity of the increasing amount of genetic data exceeds the capabilities of classical experimental assays and requires computational approaches. Biophysical psychiatry, based on modelling diseased brain networks using existing and future knowledge of basic genetic, biochemical, and functional properties on a single neuron to a microcircuit level, may allow a leap forward in deriving interpretable biomarkers and move the field toward novel treatment options.

15.
Basic Clin Pharmacol Toxicol ; 123 Suppl 5: 56-61, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29924904

RESUMO

Neuroinformatics is an area of science that aims to integrate neuroscience data and develop modern computational tools to increase our understanding of the functions of the nervous system in health and disease. Neuroinformatics tools include, among others, databases for storing and sharing data, repositories for managing documents and source code, and software tools for analysing, modelling and simulating signals and images. This MiniReview aims to present the state of the art in neuroinformatics and computational in silico modelling of neurobiological processes and neuroscientific phenomena as well as to discuss the use of in silico models in neurotoxicology research. In silico modelling can be considered a new, complementary tool in chemical design to predict potential neurotoxicity and in neurotoxicity testing to help clarify initial hypothesis obtained in in vitro and in vivo. Validated in silico models can be used to identify pharmacological targets, to help bridge in vitro and in vivo studies and, ultimately, to develop safer chemicals and efficient therapeutic strategies.


Assuntos
Biologia Computacional/métodos , Neurociências/métodos , Síndromes Neurotóxicas/prevenção & controle , Toxicologia/métodos , Animais , Simulação por Computador , Bases de Dados Factuais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Substâncias Perigosas/toxicidade , Humanos , Sistema Nervoso/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Software , Testes de Toxicidade/métodos
16.
Front Comput Neurosci ; 12: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670517

RESUMO

The computational neuroscience field has heavily concentrated on the modeling of neuronal functions, largely ignoring other brain cells, including one type of glial cell, the astrocytes. Despite the short history of modeling astrocytic functions, we were delighted about the hundreds of models developed so far to study the role of astrocytes, most often in calcium dynamics, synchronization, information transfer, and plasticity in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here is to present the state-of-the-art in computational modeling of astrocytes in order to facilitate better understanding of the functions and dynamics of astrocytes in the brain. Due to the large number of models, we concentrated on a hundred models that include biophysical descriptions for calcium signaling and dynamics in astrocytes. We categorized the models into four groups: single astrocyte models, astrocyte network models, neuron-astrocyte synapse models, and neuron-astrocyte network models to ease their use in future modeling projects. We characterized the models based on which earlier models were used for building the models and which type of biological entities were described in the astrocyte models. Features of the models were compared and contrasted so that similarities and differences were more readily apparent. We discovered that most of the models were basically generated from a small set of previously published models with small variations. However, neither citations to all the previous models with similar core structure nor explanations of what was built on top of the previous models were provided, which made it possible, in some cases, to have the same models published several times without an explicit intention to make new predictions about the roles of astrocytes in brain functions. Furthermore, only a few of the models are available online which makes it difficult to reproduce the simulation results and further develop the models. Thus, we would like to emphasize that only via reproducible research are we able to build better computational models for astrocytes, which truly advance science. Our study is the first to characterize in detail the biophysical and biochemical mechanisms that have been modeled for astrocytes.

17.
Front Neuroinform ; 12: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765315

RESUMO

The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.

18.
Front Neuroinform ; 11: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270761

RESUMO

The scientific community across all disciplines faces the same challenges of ensuring accessibility, reproducibility, and efficient comparability of scientific results. Computational neuroscience is a rapidly developing field, where reproducibility and comparability of research results have gained increasing interest over the past years. As the number of computational models of brain functions is increasing, we chose to address reproducibility using four previously published computational models of astrocyte excitability as an example. Although not conventionally taken into account when modeling neuronal systems, astrocytes have been shown to take part in a variety of in vitro and in vivo phenomena including synaptic transmission. Two of the selected astrocyte models describe spontaneous calcium excitability, and the other two neurotransmitter-evoked calcium excitability. We specifically addressed how well the original simulation results can be reproduced with a reimplementation of the models. Additionally, we studied how well the selected models can be reused and whether they are comparable in other stimulation conditions and research settings. Unexpectedly, we found out that three of the model publications did not give all the necessary information required to reimplement the models. In addition, we were able to reproduce the original results of only one of the models completely based on the information given in the original publications and in the errata. We actually found errors in the equations provided by two of the model publications; after modifying the equations accordingly, the original results were reproduced more accurately. Even though the selected models were developed to describe the same biological event, namely astrocyte calcium excitability, the models behaved quite differently compared to one another. Our findings on a specific set of published astrocyte models stress the importance of proper validation of the models against experimental wet-lab data from astrocytes as well as the careful review process of models. A variety of aspects of model development could be improved, including the presentation of models in publications and databases. Specifically, all necessary mathematical equations, as well as parameter values, initial values of variables, and stimuli used should be given precisely for successful reproduction of scientific results.

19.
Comput Biol Chem ; 30(4): 280-91, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880117

RESUMO

Mathematical modeling and simulation of dynamic biochemical systems are receiving considerable attention due to the increasing availability of experimental knowledge of complex intracellular functions. In addition to deterministic approaches, several stochastic approaches have been developed for simulating the time-series behavior of biochemical systems. The problem with stochastic approaches, however, is the larger computational time compared to deterministic approaches. It is therefore necessary to study alternative ways to incorporate stochasticity and to seek approaches that reduce the computational time needed for simulations, yet preserve the characteristic behavior of the system in question. In this work, we develop a computational framework based on the Itô stochastic differential equations for neuronal signal transduction networks. There are several different ways to incorporate stochasticity into deterministic differential equation models and to obtain Itô stochastic differential equations. Two of the developed models are found most suitable for stochastic modeling of neuronal signal transduction. The best models give stable responses which means that the variances of the responses with time are not increasing and negative concentrations are avoided. We also make a comparative analysis of different kinds of stochastic approaches, that is the Itô stochastic differential equations, the chemical Langevin equation, and the Gillespie stochastic simulation algorithm. Different kinds of stochastic approaches can be used to produce similar responses for the neuronal protein kinase C signal transduction pathway. The fine details of the responses vary slightly, depending on the approach and the parameter values. However, when simulating great numbers of chemical species, the Gillespie algorithm is computationally several orders of magnitude slower than the Itô stochastic differential equations and the chemical Langevin equation. Furthermore, the chemical Langevin equation produces negative concentrations. The Itô stochastic differential equations developed in this work are shown to overcome the problem of obtaining negative values.


Assuntos
Modelos Neurológicos , Neurônios/química , Transdução de Sinais , Simulação por Computador , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Processos Estocásticos , Fatores de Tempo
20.
Neurosci Lett ; 396(2): 102-7, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16356645

RESUMO

A new automated image analysis method for quantification of fluorescent dots is presented. This method facilitates counting the number of fluorescent puncta in specific locations of individual cells and also enables estimation of the number of cells by detecting the labeled nuclei. The method is here used for counting the AM1-43 labeled fluorescent puncta in human SH-SY5Y neuroblastoma cells induced to differentiate with all-trans retinoic acid (RA), and further stimulated with high potassium (K+) containing solution. The automated quantification results correlate well with the results obtained manually through visual inspection. The manual method has the disadvantage of being slow, labor-intensive, and subjective, and the results may not be reproducible even in the intra-observer case. The automated method, however, has the advantage of allowing fast quantification with explicitly defined methods, with no user intervention. This ensures objectivity of the quantification. In addition to the number of fluorescent dots, further development of the method allows its use for quantification of several other parameters, such as intensity, size, and shape of the puncta, that are difficult to quantify manually.


Assuntos
Inteligência Artificial , Transformação Celular Neoplásica/patologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Neuroblastoma/patologia , Reconhecimento Automatizado de Padrão/métodos , Vesículas Transportadoras/patologia , Algoritmos , Diferenciação Celular , Linhagem Celular Tumoral , Lógica Fuzzy , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA