Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 113(7): 1257-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24681509

RESUMO

BACKGROUND AND AIMS: Seed longevity, a fundamental plant trait for ex situ conservation and persistence in the soil of many species, varies across populations and generations that experience different climates. This study investigates the extent to which differences in seed longevity are due to genetic differences and/or modified by adaptive responses to environmental changes. METHODS: Seeds of two wild populations of Silene vulgaris from alpine (wA) and lowland (wL) locations and seeds originating from their cultivation in a lowland common garden for two generations (cA1, cL1, cA2 and cL2) were exposed to controlled ageing at 45 °C, 60 % relative humidity and regularly sampled for germination and relative mRNA quantification (SvHSP17.4 and SvNRPD12). KEY RESULTS: The parental plant growth environment affected the longevity of seeds with high plasticity. Seeds of wL were significantly longer lived than those of wA. However, when alpine plants were grown in the common garden, longevity doubled for the first generation of seeds produced (cA1). Conversely, longevity was similar in all lowland seed lots and did not increase in the second generation of seeds produced from alpine plants grown in the common garden (cA2). Analysis of parental effects on mRNA seed provisioning indicated that the accumulation of gene transcripts involved in tolerance to heat stress was highest in wL, cL1 and cL2, followed by cA1, cA2 and wA. CONCLUSIONS: Seed longevity has a genetic basis, but may show strong adaptive responses, which are associated with differential accumulation of mRNA via parental effects. Adaptive adjustments of seed longevity due to transgenerational plasticity may play a fundamental role in the survival and persistence of the species in the face of future environmental challenges. The results suggest that regeneration location may have important implications for the conservation of alpine plants held in seed banks.


Assuntos
Meio Ambiente , Proteínas de Plantas/genética , Sementes/fisiologia , Silene/fisiologia , Adaptação Biológica , Mudança Climática , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Itália , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/genética , Sementes/crescimento & desenvolvimento , Silene/genética , Silene/crescimento & desenvolvimento
2.
Plant Biol (Stuttg) ; 26(3): 390-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433356

RESUMO

Climate warming is occurring in high-mountain areas at a faster rate than the global average. To escape the increasing temperatures, alpine species may shift in distribution upwards, threatening cold-adapted nival plant specialists. However, little is known about the success of seedling emergence and establishment at high altitudes outside the current range, particularly in the highest mountain areas of the Himalayas. We selected four native alpine species occurring around 4000 m a.s.l. and sowed seeds at the natural growing site (GS), at a high elevation site (HS; 5000 m a.s.l.) and at high elevation with soil from the growing site (HS-S) in the Khumbu Valley, north-eastern Nepal. We monitored seedling emergence and establishment for two consecutive years. Seedling emergence and establishment varied between species. Emergence was similar between GS and HS and improved at HS-S. Establishment was low at high elevations with all but one species having high mortality after winter. Seedling emergence of low elevation plants is possible at high elevations in the Everest region, indicating species may be able to shift their distribution range upwards. However, successful establishment may be limited by the soil and high winter mortality at high elevations, although not in all species. Climate warming will potentially lead to upward migration of some Himalayan plant species, leading to altered community composition in high-mountain areas.


Assuntos
Plantas , Plântula , Meio Ambiente , Temperatura , Mudança Climática , Solo
3.
Ann Bot ; 111(5): 987-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532044

RESUMO

BACKGROUND AND AIMS: The germination test currently represents the most used method to assess seed viability in germplasm banks, despite the difficulties caused by the occurrence of seed dormancy. Furthermore, seed longevity can vary considerably across species and populations from different environments, and studies related to the eco-physiological processes underlying such variations are still limited in their depth. The aim of the present work was the identification of reliable molecular markers that might help in monitoring seed deterioration. METHODS: Dry seeds were subjected to artificial ageing and collected at different time points for molecular/biochemical analyses. DNA damage was measured using the RAPD (random amplified polymorphic DNA) approach while the seed antioxidant profile was obtained using both the DPPH (1,1-diphenyl, 2-picrylhydrazyl) assay and the Folin-Ciocalteu reagent method. Electron paramagnetic resonance (EPR) provided profiles of free radicals. Quantitative real-time polymerase chain reaction (QRT-PCR) was used to assess the expression profiles of the antioxidant genes MT2 (type 2 metallothionein) and SOD (superoxide dismutase). A modified QRT-PCR protocol was used to determine telomere length. KEY RESULTS: The RAPD profiles highlighted different capacities of the two Silene species to overcome DNA damage induced by artificial ageing. The antioxidant profiles of dry and rehydrated seeds revealed that the high-altitude taxon Silene acaulis was characterized by a lower antioxidant specific activity. Significant upregulation of the MT2 and SOD genes was observed only in the rehydrated seeds of the low-altitude species. Rehydration resulted in telomere lengthening in both Silene species. CONCLUSIONS: Different seed viability markers have been selected for plant species showing inherent variation of seed longevity. RAPD analysis, quantification of redox activity of non-enzymatic antioxidant compounds and gene expression profiling provide deeper insights to study seed viability during storage. Telomere lengthening is a promising tool to discriminate between short- and long-lived species.


Assuntos
Antioxidantes/metabolismo , Impressões Digitais de DNA/métodos , Sementes/crescimento & desenvolvimento , Sementes/genética , Silene/crescimento & desenvolvimento , Silene/genética , Telômero/metabolismo , Altitude , Primers do DNA/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Sequestradores de Radicais Livres/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Germinação/genética , Fenóis/metabolismo , Filogenia , Extratos Vegetais/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Espécies Reativas de Oxigênio/metabolismo , Homeostase do Telômero/genética
4.
Plant Biol (Stuttg) ; 24(5): 836-845, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506610

RESUMO

Seed longevity is a complex trait that depends on numerous factors. It varies among species and populations, and within different seed morphs produced by the same plant. Little is known about variation in longevity in different seed morphs or the physiological and molecular basis of these differences. We evaluated the longevity and oxidative stress status in heteromorphic seeds aged in two different storage conditions. We compared controlled ageing tests (seed storage at 45°C and 60% relative humidity; a method of accelerated ageing used to estimate longevity in genebank conditions) with storage in a genebank for up to 40 years (-18°C and 8% seed moisture content). We employed as study species two wild wheats characterized by seed heteromorphism: Aegilops tauschii and Triticum monococcum subsp. aegilopoides. We estimated the ROS content and the expression of genes coding for enzymes related to the H2 O2 scavenging pathway. Results confirmed that seed longevity varies between different seed morphs. Different storage environments resulted in different longevity and survival curves. ROS levels, even if with variable patterns, were higher in several aged seed lots. We observed consistency in the expression of two genes (GSR and CAT) related to ROS scavenging in the late phase of pre-germinative metabolism. Differences in seed longevity between morphs were observed for the first time under genebank conditions. Our results suggest also that controlled ageing tests should be used with caution to infer ranks of longevity under cold storage.


Assuntos
Sementes , Triticum , Germinação/genética , Espécies Reativas de Oxigênio , Sementes/genética , Triticum/genética
5.
Plant Biol (Stuttg) ; 22(2): 191-202, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31639249

RESUMO

Crop wild relatives are fundamental genetic resources for crop improvement. Wheat wild relatives often produce heteromorphic seeds that differ in morphological and physiological traits. Several Aegilops and Triticum species possess, within the same spikelet, a dimorphic seed pair, with one seed being larger than the other. A comprehensive analysis is needed to understand which traits are involved in seed dimorphism and if these aspects of variation in dimorphic pairs are functionally related. To this end, dispersal units of Triticum urartu and five Aegilops species were X-rayed and the different seed morphs weighed. Germination tests were carried out on seeds, both dehulled and left in their dispersal units. Controlled ageing tests were performed to detect differences in seed longevity among seed morphs, and the antioxidant profile was assessed in terms of antioxidant compounds equipment and expression of selected antioxidant genes. We used PCA to group seed morphs sharing similar patterns of germination traits, longevity estimates and antioxidant profile. Different seed morphs differed significantly in terms of mass, final germination, germination timing, longevity estimates and antioxidant profile in most of the tested species. Small seeds germinated slower, had lower germination when left in their dispersal units, a higher antioxidant potential and were longer-lived than large seeds. The antioxidant gene expression varied between morphs, with different patterns across species but not clearly reflecting the phenotypic observations. The results highlight different trait trade-offs in dimorphic seeds of Aegilops and T. urartu, affecting their germination phenology and longevity, thereby resulting in recruitment niche differentiation.


Assuntos
Germinação , Sementes , Triticum , Ecossistema , Sementes/crescimento & desenvolvimento
6.
Plant Biol (Stuttg) ; 19(2): 165-171, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27917571

RESUMO

Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req. ex Bertol., Triticum aestivum L. and T. durum Desf. were used as comparison. Under full hydration, germination was high in all populations, but increasing drought stress led to reduced and delayed germination. Significant differences in final germination and mean time to germinate were detected among populations. Wheat, durum wheat and the southern population of Ae. geniculata were not significantly affected by drought stress, germinating similarly under all treatments. However, seed germination of the northern populations of Ae. geniculata was significantly reduced under high water stress treatment. Differences between populations of the same species could not be explained by annual rainfall across populations' distributions, but by rainfall during seed development and maturation. Differences in the germination responses to drought found here highlight the importance of source populations as criteria for genotype selection for pre-breeders.


Assuntos
Germinação , Poaceae/fisiologia , Triticum/fisiologia , Água/fisiologia , Adaptação Fisiológica , Produtos Agrícolas , Secas , Genótipo , Poaceae/genética , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Triticum/genética
7.
Plant Biol (Stuttg) ; 14(3): 475-80, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22117612

RESUMO

We examined the germination ecology and the temperature requirements for germination of Erythronium dens-canis, under both outdoor and laboratory conditions. E. dens-canis is a spring flowering woodland geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, were investigated in a natural population growing in Northern Italy. Immediately after harvest, seeds of E. dens-canis were either sown on agar in the laboratory under simulated seasonal temperatures or placed in nylon mesh sachets and buried in the wild. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions in the laboratory and in the wild, culminating in radicle emergence in winter when temperatures fell to ≈ 5 °C. Emergence of cotyledons did not occur immediately after radicle emergence, but was delayed until the end of winter. Laboratory experiments showed that temperature is the main factor controlling dormancy and germination, with seeds becoming non-dormant only when given warmth, followed by cold stratification. Unlike seeds of E. dens-canis that germinate in winter, in other Erythronium species radicle emergence occurs in autumn, while in some it is delayed until seeds are transferred from winter to spring conditions. Our results suggest that there is genetic and environmental control of the expression of seed dormancy amongst Erythronium species, which is related to local climate.


Assuntos
Liliaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Adaptação Fisiológica , Cotilédone/crescimento & desenvolvimento , Europa (Continente) , Germinação/fisiologia , Itália , Dormência de Plantas/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA