Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 133(2): 458-476, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35396778

RESUMO

AIM: This study aimed to characterize the critical points for determining the development of dysbiosis associated with feed intolerances and ruminal acidosis. METHODS AND RESULTS: A metabologenomics approach was used to characterize dynamic microbial and metabolomics shifts using the rumen simulation technique (RUSITEC) by feeding native cornstarch (ST), chemically modified cornstarch (CMS), or sucrose (SU). SU and CMS elicited the most drastic changes as rapidly as 4 h after feeding. This was accompanied by a swift accumulation of d-lactate, and the decline of benzoic and malonic acid. A consistent increase in Bifidobacterium and Lactobacillus as well as a decrease in fibrolytic bacteria was observed for both CMS and ST after 24 h, indicating intolerances within the fibre degrading populations. However, an increase in Lactobacillus was already evident in SU after 8 h. An inverse relationship between Fibrobacter and Bifidobacterium was observed in ST. In fact, Fibrobacter was positively correlated with several short-chain fatty acids, while Lactobacillus was positively correlated with lactic acid, hexoses, hexose-phosphates, pentose phosphate pathway (PENTOSE-P-PWY), and heterolactic fermentation (P122-PWY). CONCLUSIONS: The feeding of sucrose and modified starches, followed by native cornstarch, had a strong disruptive effect in the ruminal microbial community. Feed intolerances were shown to develop at different rates based on the availability of glucose for ruminal microorganisms. SIGNIFICANCE AND IMPACT OF THE STUDY: These results can be used to establish patterns of early dysbiosis (biomarkers) and develop strategies for preventing undesirable shifts in the ruminal microbial ecosystem.


Assuntos
Microbiota , Rúmen , Ração Animal/análise , Animais , Dieta , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Disbiose/metabolismo , Disbiose/veterinária , Fermentação , Fibrobacter , Lactobacillus/metabolismo , Rúmen/microbiologia , Amido/metabolismo , Sacarose/metabolismo
2.
Arch Anim Nutr ; 72(1): 42-57, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271253

RESUMO

The objective of the present study was to demonstrate the efficiency of the decontamination process applied to deoxynivalenol (DON)-contaminated maize by sodium sulphite (Na2SO3) treatment in vivo. Additionally, in vitro characterisation of the toxicity of the DON sulphonates (DONS 1, 2 and 3 denote structurally different forms), the resulting DON metabolites, on peripheral blood mononuclear cells (PBMC) should substantiate the inactivation of DON. In a piglet experiment, both DON-contaminated maize and -uncontaminated control maize either untreated (DON-, CON-) or Na2SO3-treated (DON+, CON+) were mixed into feed and fed for 42 d starting from weaning. The results showed that feed intake and daily weight gain of animals fed DON- were significantly lower compared to animals fed CON- and CON+, whereas group DON+ reached the control level or even exceeded it. The feed-to-gain ratio was unaffected (p = 0.45). Furthermore, DON concentrations in plasma markedly reflected the diets' DON concentrations. These were < 0.1, < 0.1, 5.4 and 0.8 mg/kg feed for CON-, CON+, DON- and DON+, and amounted to 0.3, 0.4, 33.0 and 9.3 ng/ml in plasma, respectively. Whereas DONS 2 and 3 were detected in the DON+ diet, only DONS 2 was recovered in plasma. Regarding the toxicity of DONS, no or much lower toxicity was found compared to DON. DONS 1 and Na2SO3 did not affect the viability of PBMC. At 32.71µM DONS2 the viability was reduced by 50% and thus this compound was less toxic than DON by a factor of 73. Consequently, wet preservation of maize with Na2SO3 was an effective tool to avoid the adverse effects of DON on performance of piglets.


Assuntos
Micotoxinas/sangue , Sulfitos/farmacologia , Sus scrofa/fisiologia , Tricotecenos/sangue , Tricotecenos/toxicidade , Aumento de Peso/efeitos dos fármacos , Ração Animal/análise , Animais , Descontaminação , Dieta/veterinária , Comportamento Alimentar/efeitos dos fármacos , Masculino , Sus scrofa/sangue , Zea mays/química
3.
BMC Microbiol ; 15: 73, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25887091

RESUMO

BACKGROUND: Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. RESULTS: We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. CONCLUSIONS: Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.


Assuntos
Alcaloides de Claviceps/metabolismo , Ácido Lisérgico/metabolismo , Rhodococcus/metabolismo , Animais , Biotransformação , Claviceps/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Epichloe/metabolismo , Mamíferos , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Front Vet Sci ; 8: 714545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722695

RESUMO

Starch-rich diets are a commonly adopted strategy in order to sustain high milk yields in dairy cows. However, these diets are known to increase the risk of gut dysbiosis and related systemic health disorders. This study aimed to evaluate the effects of supplementing a clay mineral-based feed additive (CM; Mycofix® Plus, BIOMIN) on fecal microbiota structure, fecal short-chain fatty acid (SCFA) fermentation, serum metabolome, and liver health in primiparous (PP, n = 8) and multiparous (MP, n = 16) early-lactation Simmental cows (737 ± 90 kg of live body weight). Cows were randomly assigned to either a control or CM group (55 g per cow and day) and transitioned from a diet moderate in starch (26.3 ± 1.0%) to a high starch diet (32.0 ± 0.8%). Supplementation of CM reversed the decrease in bacterial diversity, richness, and evenness (p < 0.05) during high-starch diet, demonstrating that CM supplementation efficiently eased hindgut dysbiosis. The CM treatment reduced levels of Lactobacillus in PP cows during starch-rich feeding and elevated fecal pH, indicating a healthier hindgut milieu compared with that in control. Butyrate and propionate levels were modulated by CM supplementation, with butyrate being lower in CM-treated MP cows, whereas propionate was lower in MP but higher in PP cows. Supplementing CM during high-starch feeding increased the concentrations of the main primary bile salts and secondary bile acids in the serum and improved liver function in cows as indicated by reduced levels of glutamate dehydrogenase and γ-glutamyl-transferase, as well as higher serum albumin and triglyceride concentrations. These changes and those related to lipid serum metabolome were more pronounced in PP cows as also corroborated by relevance network analysis.

5.
Toxins (Basel) ; 8(3)2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27007395

RESUMO

The mycotoxin fumonisin B1 (FB1) is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB1 to its less toxic metabolite hydrolyzed FB1 (HFB1) in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB1 was completely degraded to HFB1 in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme) in vivo, female turkeys (n = 5) received either basal feed (CON), fumonisin-contaminated feed (15 mg/kg FB1+FB2; FB) or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme) for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB1 in excreta, whereas HFB1 concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02), the mean serum sphinganine-to-sphingosine (Sa/So) ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02), thus resembling values of the CON group (0.16 ± 0.02). Similarly, exposure of piglets (n = 10) to 2 mg/kg FB1+FB2 for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15) compared to the CON group (0.14 ± 0.01). Supplementation with FUMzyme (60 U/kg) resulted in gastrointestinal degradation of FB1 and unaffected Sa/So ratios (0.16 ± 0.02). Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs.


Assuntos
Hidrolases de Éster Carboxílico/farmacologia , Fumonisinas/metabolismo , Intestinos/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/sangue , Ração Animal , Animais , Fezes/química , Feminino , Contaminação de Alimentos , Mucosa Intestinal/metabolismo , Esfingolipídeos/metabolismo , Suínos , Perus
6.
Toxins (Basel) ; 7(11): 4622-44, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556376

RESUMO

Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate.


Assuntos
Ração Animal/efeitos adversos , Micotoxinas/farmacocinética , Sulfitos/farmacologia , Tricotecenos/farmacocinética , Zea mays/microbiologia , Administração Intravenosa , Administração Oral , Ração Animal/análise , Animais , Disponibilidade Biológica , Contaminação de Alimentos/análise , Meia-Vida , Concentração de Íons de Hidrogênio , Masculino , Micotoxinas/sangue , Sus scrofa , Suínos , Tricotecenos/sangue , Vômito/induzido quimicamente
7.
Toxins (Basel) ; 7(3): 791-811, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25760079

RESUMO

Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction.


Assuntos
Sulfitos/química , Tricotecenos/análise , Zea mays/microbiologia , Ração Animal/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fusarium/química , Concentração de Íons de Hidrogênio , Sementes/química , Sementes/microbiologia , Água/análise
8.
Food Chem Toxicol ; 76: 11-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25475052

RESUMO

Fumonisin B1 (FB1) is a Fusarium mycotoxin frequently occurring in maize-based food and feed. Alkaline processing like nixtamalisation of maize generates partially and fully hydrolysed FB1 (pHFB1 and HFB1) and thermal treatment in the presence of reducing sugars leads to formation of N-(1-deoxy-D-fructos-1-yl) fumonisin B1 (NDF). The toxicity of these metabolites, in particular their effect on the sphingolipid metabolism, is either unknown or discussed controversially. We produced high purity FB1, pHFB1a+b, HFB1 and NDF and fed them to male Sprague Dawley rats for three weeks. Once a week, urine and faeces samples were collected over 24 h and analysed for fumonisin metabolites as well as for the sphinganine (Sa) to sphingosine (So) ratio by validated LC-MS/MS based methods. While the latter was significantly increased in the FB1 positive control group, the Sa/So ratios of the partially and fully hydrolysed fumonisins were indifferent from the negative control group. Although NDF was partly cleaved during digestion, the liberated amounts of FB1 did not raise the Sa/So ratio. These results show that the investigated alkaline and thermal processing products of FB1 were, at the tested concentrations, non-toxic for rats, and suggest that according food processing can reduce fumonisin toxicity for humans.


Assuntos
Fumonisinas/administração & dosagem , Esfingolipídeos/metabolismo , Animais , Cromatografia Líquida , Fezes/química , Fumonisinas/toxicidade , Fusarium/química , Rim/efeitos dos fármacos , Rim/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Esfingosina/análogos & derivados , Esfingosina/urina , Espectrometria de Massas em Tandem , Urinálise , Zea mays/microbiologia
9.
Toxicol Lett ; 229(1): 190-7, 2014 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-24968060

RESUMO

Plants can metabolize the Fusarium mycotoxin deoxynivalenol (DON) by forming the masked mycotoxin deoxynivalenol-3-ß-D-glucoside (D3G). D3G might be cleaved during digestion, thus increasing the total DON burden of an individual. Due to a lack of in vivo data, D3G has not been included in the various regulatory limits established for DON so far. The aim of our study was to contribute to the risk assessment of D3G by determination of its metabolism in pigs. Four piglets received water, D3G (116 µg/kg b.w.) and the equimolar amount of DON (75 µg/kg b.w.) by gavage on day 1, 5 and 9 of the experiment, respectively. Additionally, 15.5 µg D3G/kg b.w. were administered intravenously on day 13. Urine and feces were collected for 24 h and analyzed for DON, D3G, deoxynivalenol-3-glucuronide (DON-3-GlcA), deoxynivalenol-15-GlcA (DON-15-GlcA) and deepoxy-deoxynivalenol (DOM-1) by UHPLC-MS/MS. After oral application of DON and D3G, in total 84.8±9.7% and 40.3±8.5% of the given dose were detected in urine, respectively. The majority of orally administered D3G was excreted in form of DON, DON-15-GlcA, DOM-1 and DON-3-GlcA, while urinary D3G accounted for only 2.6±1.4%. In feces, just trace amounts of metabolites were found. Intravenously administered D3G was almost exclusively excreted in unmetabolized form via urine. Data indicate that D3G is nearly completely hydrolyzed in the intestinal tract of pigs, while the toxin seems to be rather stable after systemic absorption. Compared to DON, the oral bioavailability of D3G and its metabolites seems to be reduced by a factor of up to 2, approximately.


Assuntos
Glucosídeos/metabolismo , Micotoxinas/metabolismo , Tricotecenos/metabolismo , Administração Oral , Animais , Anorexia/induzido quimicamente , Disponibilidade Biológica , Biotransformação , Cromatografia Líquida de Alta Pressão , Fezes/química , Glucosídeos/farmacocinética , Glucosídeos/urina , Indicadores e Reagentes , Injeções Intravenosas , Absorção Intestinal , Masculino , Espectrometria de Massas , Reprodutibilidade dos Testes , Suínos , Tricotecenos/farmacocinética , Tricotecenos/urina , Vômito/induzido quimicamente , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA