Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 153(6): 1340-53, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746845

RESUMO

Yeast telomeres comprise irregular TG1₋3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.


Assuntos
Cromossomos Fúngicos/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Alinhamento de Sequência , Complexo Shelterina
2.
Cell ; 147(5): 1024-39, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118460

RESUMO

The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.


Assuntos
Ubiquitina-Proteína Ligases/química , Animais , Cristalografia por Raios X , Proteínas Culina/química , Dano ao DNA , Proteínas de Ligação a DNA/química , Ativação Enzimática , Humanos , Modelos Moleculares , Ubiquitina-Proteína Ligases/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/química
3.
Cell ; 135(7): 1213-23, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109893

RESUMO

Ultraviolet (UV) light-induced pyrimidine photodimers are repaired by the nucleotide excision repair pathway. Photolesions have biophysical parameters closely resembling undamaged DNA, impeding discovery through damage surveillance proteins. The DDB1-DDB2 complex serves in the initial detection of UV lesions in vivo. Here we present the structures of the DDB1-DDB2 complex alone and bound to DNA containing either a 6-4 pyrimidine-pyrimidone photodimer (6-4PP) lesion or an abasic site. The structure shows that the lesion is held exclusively by the WD40 domain of DDB2. A DDB2 hairpin inserts into the minor groove, extrudes the photodimer into a binding pocket, and kinks the duplex by approximately 40 degrees. The tightly localized probing of the photolesions, combined with proofreading in the photodimer pocket, enables DDB2 to detect lesions refractory to detection by other damage surveillance proteins. The structure provides insights into damage recognition in chromatin and suggests a mechanism by which the DDB1-associated CUL4 ubiquitin ligase targets proteins surrounding the site of damage.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Raios Ultravioleta , Animais , Dano ao DNA , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
4.
PLoS Pathog ; 16(9): e1008552, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32966346

RESUMO

Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Sistemas de Secreção Tipo VI/metabolismo , Yersinia pseudotuberculosis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Conformação Proteica , Estresse Fisiológico , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética , Yersinia pseudotuberculosis/genética
5.
Biophys J ; 120(8): 1333-1342, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33609496

RESUMO

Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.


Assuntos
Bicamadas Lipídicas , Lipídeos , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
6.
J Biol Chem ; 293(22): 8672-8690, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29535184

RESUMO

Yersinia pseudotuberculosis is a Gram-negative bacterium and zoonotic pathogen responsible for a wide range of diseases, ranging from mild diarrhea, enterocolitis, lymphatic adenitis to persistent local inflammation. The Y. pseudotuberculosis invasin D (InvD) molecule belongs to the invasin (InvA)-type autotransporter proteins, but its structure and function remain unknown. In this study, we present the first crystal structure of InvD, analyzed its expression and function in a murine infection model, and identified its target molecule in the host. We found that InvD is induced at 37 °C and expressed in vivo 2-4 days after infection, indicating that InvD is a virulence factor. During infection, InvD was expressed in all parts of the intestinal tract, but not in deeper lymphoid tissues. The crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold that, apart from the canonical ß-sheets, comprises various modifications of and insertions into the Ig-core structure. We identified the Fab fragment of host-derived IgG/IgA antibodies as the target of the adhesion domain. Phage display panning and flow cytometry data further revealed that InvD exhibits a preferential binding specificity toward antibodies with VH3/VK1 variable domains and that it is specifically recruited to a subset of B cells. This finding suggests that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors. In summary, our results provide extensive insights into the structure of InvD and its specific interaction with the target molecule in the host.


Assuntos
Adesinas Bacterianas/metabolismo , Anticorpos/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Intestinos/microbiologia , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/patogenicidade , Adesinas Bacterianas/química , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Aderência Bacteriana , Feminino , Fragmentos Fab das Imunoglobulinas/imunologia , Intestinos/imunologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Virulência , Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/patologia
7.
Nucleic Acids Res ; 45(4): 2166-2178, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27940564

RESUMO

Isovaleryl coenzyme A (IV-CoA) is an important building block of iso-fatty acids. In myxobacteria, IV-CoA is essential for the formation of signaling molecules involved in fruiting body formation. Leucine degradation is the common source of IV-CoA, but a second, de novo biosynthetic route to IV-CoA termed AIB (alternative IV-CoA biosynthesis) was recently discovered in M. xanthus. The AIB-operon contains the TetR-like transcriptional regulator AibR, which we characterize in this study. We demonstrate that IV-CoA binds AibR with micromolar affinity and show by gelshift experiments that AibR interacts with the promoter region of the AIB-operon once IV-CoA is present. We identify an 18-bp near-perfect palindromic repeat as containing the AibR operator and provide evidence that AibR also controls an additional genomic locus coding for a putative acetyl-CoA acetyltransferase. To elucidate atomic details, we determined crystal structures of AibR in the apo, the IV-CoA- and the IV-CoA-DNA-bound state to 1.7 Å, 2.35 Å and 2.92 Å, respectively. IV-CoA induces partial unfolding of an α-helix, which allows sequence-specific interactions between AibR and its operator. This study provides insights into AibR-mediated regulation and shows that AibR functions in an unusual TetR-like manner by blocking transcription not in the ligand-free but in the effector-bound state.


Assuntos
Acil Coenzima A/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Fatores de Transcrição/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Modelos Moleculares , Conformação Molecular , Óperon , Regiões Promotoras Genéticas , Fatores de Transcrição/química
8.
Metab Eng ; 47: 263-270, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29609044

RESUMO

Synthetic biology techniques hold great promise for optimising the production of natural products by microorganisms. However, evaluating the phenotype of a modified bacterium represents a major bottleneck to the engineering cycle - particularly for antibiotic-producing actinobacteria strains, which grow slowly and are challenging to genetically manipulate. Here, we report the generation and application of antibiotic-specific whole-cell biosensor derived from TetR transcriptional repressor for use in identifying and optimising antibiotic producers. The constructed biosensor was successfully used to improve production of polyketide antibiotic pamamycin. However, an initial biosensor based on native genetic elements had inadequate dynamic and operating ranges. To overcome these limitations, we fine-tuned biosensor performance through alterations of the promoter and operator of output module and the ligand affinity of transcription factor module, which enabled us to deduce recommendations for building and application of actinobacterial biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Macrolídeos/análise , Microrganismos Geneticamente Modificados , Streptomyces , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
9.
J Struct Biol ; 198(1): 19-27, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28268178

RESUMO

IcsA/VirG is a key virulence factor of the human pathogen Shigella flexneri, acting as both an adhesin and actin-polymerizing factor during infection. We identified a soluble expression construct of the IcsA/VirG α-domain using the ESPRIT library screening system and determined its structure to 1.9Å resolution. In addition to the previously characterized autochaperone domain, our structure reveals a new domain, which shares a common fold with the autochaperone domains of various autotransporters. We further provide insight into the previously structurally uncharacterized ß-helix domain that harbors the polar targeting motif and passenger-associated transport repeat. This structure is the first of any member of the recently identified passenger-associated transport repeat-containing autotransporters. Thus, it provides new insights into the overall architecture of this class of autotransporters, the function of the identified additional autochaperone domain and the structural properties of motifs involved in polar targeting and secretion of the Shigella flexneri virulence factor IcsA/VirG.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Shigella flexneri/patogenicidade , Fatores de Transcrição/química , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência/química , Motivos de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Estrutura Molecular , Domínios Proteicos , Transporte Proteico , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 291(39): 20417-26, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27493205

RESUMO

Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed ß-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces/metabolismo , Transglutaminases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/química , Streptomyces/genética , Transglutaminases/química , Transglutaminases/genética
11.
Mol Microbiol ; 101(5): 841-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27206164

RESUMO

The bacterial flagellum enables directed movement of Salmonella enterica towards favorable conditions in liquid environments. Regulation of flagellar synthesis is tightly controlled by various environmental signals at transcriptional and post-transcriptional levels. The flagellar master regulator FlhD4 C2 resides on top of the flagellar transcriptional hierarchy and is under autogenous control by FlhD4 C2 -dependent activation of the repressor rflM. The inhibitory activity of RflM depends on the presence of RcsB, the response regulator of the RcsCDB phosphorelay system. In this study, we elucidated the molecular mechanism of RflM-dependent repression of flhDC. We show that RcsB and RflM form a heterodimer that coordinately represses flhDC transcription independent of RcsB phosphorylation. RcsB-RflM complex binds to a RcsB box downstream the P1 transcriptional start site of the flhDC promoter with increased affinity compared to RcsB in the absence of RflM. We propose that RflM stabilizes binding of unphosphorylated RcsB to the flhDC promoter in absence of environmental cues. Thus, RflM is a novel auxiliary regulatory protein that mediates target specificity of RcsB for flhDC repression. The cooperative action of the RcsB-RflM repressor complex allows Salmonella to fine-tune initiation of flagellar gene expression and adds another level to the complex regulation of flagellar synthesis.


Assuntos
Flagelos/genética , Flagelos/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Fosforilação , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Biotechnol Bioeng ; 113(9): 1975-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26913471

RESUMO

Recombinant protein expression often presents a bottleneck for the production of proteins for use in many areas of animal-cell biotechnology. Difficult-to-express proteins require the generation of numerous expression constructs, where popular prokaryotic screening systems often fail to identify expression of multi domain or full-length protein constructs. Post-translational modified mammalian proteins require an alternative host system such as insect cells using the Baculovirus Expression Vector System (BEVS). Unfortunately this is time-, labor-, and cost-intensive. It is clearly desirable to find an automated and miniaturized fast multi-sample screening method for protein expression in such systems. With this in mind, in this paper a high-throughput initial expression screening method is described using an automated Microcultivation system in conjunction with fast plasmid based transient transfection in insect cells for the efficient generation of protein constructs. The applicability of the system is demonstrated for the difficult to express Nucleotide-binding Oligomerization Domain-containing protein 2 (NOD2). To enable detection of proper protein expression the rather weak plasmid based expression has been improved by a sensitive inline detection system. Here we present the functionality and application of the sensitive SplitGFP (split green fluorescent protein) detection system in insect cells. The successful expression of constructs is monitored by direct measurement of the fluorescence in the BioLector Microcultivation system. Additionally, we show that the results obtained with our plasmid-based SplitGFP protein expression screen correlate directly to the level of soluble protein produced in BEVS. In conclusion our automated SplitGFP screen outlines a sensitive, fast and reliable method reducing the time and costs required for identifying the optimal expression construct prior to large scale protein production in baculovirus infected insect cells. Biotechnol. Bioeng. 2016;113: 1975-1983. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Clonagem Molecular/métodos , Proteínas de Fluorescência Verde/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/genética , Animais , Baculoviridae/genética , Proteínas de Fluorescência Verde/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Células Sf9
13.
Angew Chem Int Ed Engl ; 54(45): 13420-4, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26367875

RESUMO

Based on the crystal structure of a natural protein substrate for microbial transglutaminase, an enzyme that catalyzes protein crosslinking, a recognition motif for site-specific conjugation was rationally designed. Conformationally locked by an intramolecular disulfide bond, this structural mimic of a native conjugation site ensured efficient conjugation of a reporter cargo to the therapeutic monoclonal antibody cetuximab without erosion of its binding properties.


Assuntos
Cetuximab/química , Transglutaminases/química , Animais , Células CHO , Linhagem Celular Tumoral , Cetuximab/metabolismo , Cricetulus , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Transglutaminases/metabolismo
14.
Sci Adv ; 10(25): eadm9404, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896613

RESUMO

In the quest for new bioactive substances, nonribosomal peptide synthetases (NRPS) provide biodiversity by synthesizing nonproteinaceous peptides with high cellular activity. NRPS machinery consists of multiple modules, each catalyzing a unique series of chemical reactions. Incomplete understanding of the biophysical principles orchestrating these reaction arrays limits the exploitation of NRPSs in synthetic biology. Here, we use nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to solve the conundrum of how intermodular recognition is coupled with loaded carrier protein specificity in the tomaymycin NRPS. We discover an adaptor domain that directly recruits the loaded carrier protein from the initiation module to the elongation module and reveal its mechanism of action. The adaptor domain of the type found here has specificity rules that could potentially be exploited in the design of engineered NRPS machinery.


Assuntos
Peptídeo Sintases , Peptídeo Sintases/metabolismo , Peptídeo Sintases/química , Especificidade por Substrato , Domínios Proteicos , Ligação Proteica , Espectroscopia de Ressonância Magnética/métodos
15.
EMBO J ; 27(7): 1145-53, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18309292

RESUMO

The GTP-binding protein Rap1 regulates integrin-mediated and other cell adhesion processes. Unlike most other Ras-related proteins, it contains a threonine in switch II instead of a glutamine (Gln61 in Ras), a residue crucial for the GTPase reaction of most G proteins. Furthermore, unlike most other GTPase-activating proteins (GAPs) for small G proteins, which supply a catalytically important Arg-finger, no arginine residue of RapGAP makes a significant contribution to the GTPase reaction of Rap1. For a detailed understanding of the reaction mechanism, we have solved the structure of Rap1 in complex with Rap1GAP. It shows that the Thr61 of Rap is away from the active site and that an invariant asparagine of RapGAPs, the Asn-thumb, takes over the role of the cis-glutamine of Ras, Rho or Ran. The structure and biochemical data allow to further explain the mechanism and to define the important role of a conserved tyrosine. The structure and biochemical data furthermore show that the RapGAP homologous region of the tumour suppressor Tuberin is sufficient for catalysis on Rheb.


Assuntos
Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas rap1 de Ligação ao GTP/química , Proteínas rap1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glutamina/genética , Glutamina/metabolismo , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
16.
Eur J Med Chem ; 226: 113797, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520957

RESUMO

A short and divergent route towards new derivatives of 2-(trifluoromethyl)pyridines as potent inverse agonists of the bacterial target PqsR against Pseudomonas aeruginosa (PA) infections is described. This Gram-negative pathogen causes severe nosocomial infections and common antibiotic treatment options are rendered ineffective due to resistance issues. Based on an earlier identified optimized hit, we conducted derivatization and rigidification attempts employing two central building blocks. The western part of the molecule is built up via a 2-(trifluoromethyl)pyridine head group equipped with a terminal alkyne. The eastern section is then introduced through aryliode motifs exploiting Sonogashira as well as Suzuki-type chemistry. Subsequent modification provided quick access to an array of compounds, allowed for deep SAR insights, and enabled to optimize the hit scaffold into a lead structure of nanomolar potency combined with favorable in vitro ADME/T features.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/agonistas , Pseudomonas aeruginosa/efeitos dos fármacos , Piridinas/farmacologia , Transativadores/agonistas , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
17.
Adv Sci (Weinh) ; 8(12): e2004369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34165899

RESUMO

Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.


Assuntos
Biofilmes/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/agonistas , Percepção de Quorum/efeitos dos fármacos , Tobramicina/farmacologia , Animais , Modelos Animais de Doenças , Camundongos
18.
FEBS J ; 287(4): 708-720, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420998

RESUMO

Streptomyces mobaraensis is a key player for the industrial production of the protein cross-linking enzyme microbial transglutaminase (MTG). Extra-cellular activation of MTG by the transglutaminase-activating metalloprotease (TAMP) is regulated by the TAMP inhibitory protein SSTI that belongs to the large Streptomyces subtilisin inhibitor (SSI) family. Despite decades of SSI research, the binding site for metalloproteases such as TAMP remained elusive in most of the SSI proteins. Moreover, SSTI is a MTG substrate, and the preferred glutamine residues for SSTI cross-linking are not determined. To address both issues, that is, determination of the TAMP and the MTG glutamine binding sites, SSTI was modified by distinct point mutations as well as elongation or truncation of the N-terminal peptide by six and three residues respectively. Structural integrity of the mutants was verified by the determination of protein melting points and supported by unimpaired subtilisin inhibitory activity. While exchange of single amino acids could not disrupt decisively the SSTI TAMP interaction, the N-terminally shortened variants clearly indicated the highly conserved Leu40-Tyr41 as binding motif for TAMP. Moreover, enzymatic biotinylation revealed that an adjacent glutamine pair, upstream from Leu40-Tyr41 in the SSTI precursor protein, is the preferred binding site of MTG. This extension peptide disturbs the interaction with TAMP. The structure of SSTI was furthermore determined by X-ray crystallography. While no structural data could be obtained for the N-terminal peptide due to flexibility, the core structure starting from Tyr41 could be determined and analysed, which superposes well with SSI-family proteins. ENZYMES: Chymotrypsin, EC3.4.21.1; griselysin (SGMPII, SgmA), EC3.4.24.27; snapalysin (ScNP), EC3.4.24.77; streptogrisin-A (SGPA), EC3.4.21.80; streptogrisin-B (SGPB), EC3.4.21.81; subtilisin BPN', EC3.4.21.62; transglutaminase, EC2.3.2.13; transglutaminase-activating metalloprotease (TAMP), EC3.4.-.-; tri-/tetrapeptidyl aminopeptidase, EC3.4.11.-; trypsin, EC3.4.21.4. DATABASES: The atomic coordinates and structure factors (PDB 6I0I) have been deposited in the Protein Data Bank (http://www.rcsb.org).


Assuntos
Proteínas de Bactérias/química , Glutamina/química , Streptomyces/enzimologia , Transglutaminases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotinilação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glutamina/metabolismo , Cinética , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Streptomyces/genética , Especificidade por Substrato , Transglutaminases/genética , Transglutaminases/metabolismo
19.
FEBS J ; 285(24): 4684-4694, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30318745

RESUMO

The protein cross-linking enzyme transglutaminase from Streptomyces mobaraensis (MTG) is frequently used to modify therapeutic proteins. In order to reveal the binding mode of glutamine donor substrates, we have now crystallized MTG covalently linked to large inhibitory peptides. A series of peptide structures were examined but DIPIGSKMTG, which was chloroacetylated at serine, was the only inhibitory molecule that resulted in an interpretable density map. We found that, besides the warhead (modified Ser6), Ile4 and Gly5 of the inhibitory peptide occupy the tight but extended hydrophobic bottom of the MTG-binding cleft. Both termini of the peptide protrude along the cleft walls almost perpendicular to the bottom of the extended cleft. This peptide model suggests a zipper-like cross-linking mechanism of self-assembled substrate proteins by MTG.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glutamina/metabolismo , Fragmentos de Peptídeos/farmacologia , Streptomyces/enzimologia , Transglutaminases/química , Transglutaminases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
20.
FEBS J ; 285(22): 4246-4264, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30171661

RESUMO

The Dispase autolysis-inducing protein (DAIP) is produced by Streptomyces mobaraensis to disarm neutral metalloproteases by decomposition. The absence of a catalytic protease domain led to the assumption that the seven-bladed ß-propeller protein DAIP causes structural modifications, thereby triggering autolysis. Determination of protein complexes consisting of DAIP and thermolysin or DAIP and a nonfunctional E138A bacillolysin variant supported this postulation. Protein twisting was indicated by DAIP-mediated inhibition of thermolysin while bacillolysin underwent immediate autolysis under the same conditions. Interestingly, an increase in SYPRO orange fluorescence allowed tracking of the fast degradation process. Similarly rapid autolysis of thermolysin mediated by DAIP was only observed upon the addition of amphiphilic compounds, which probably amplify the induced structural changes. DAIP further caused degradation of FITC-labeled E138A bacillolysin by trypsin, as monitored by a linear decrease in fluorescence polarization. The kinetic model, calculated from the obtained data, suggested a three-step mechanism defined by (a) fast DAIP-metalloprotease complex formation, (b) slower DAIP-mediated protein twisting, and (c) fragmentation. These results were substantiated by crystallized DAIP attached to a C-terminal helix fragment of thermolysin. Structural superposition of the complex with thermolysin is indicative of a conformational change upon binding to DAIP. Importantly, the majority of metalloproteases, also including homologs from various pathogens, are highly conserved at the autolysis-prone peptide bonds, suggesting their susceptibility to DAIP-mediated decomposition, which may offer opportunities for pharmaceutical applications. DATABASES: The atomic coordinates and structure factors (PDB ID: 6FHP) have been deposited in the Protein Data Bank (http://www.pdb.org/). ENZYMES: Aureolysin, EC 3.4.24.29; bacillolysin (Dispase, Gentlyase), EC 3.4.24.28; lasB (elastase), EC 3.4.24.4; subtilisin, EC 3.4.21.62; thermolysin, EC 3.4.24.27; transglutaminase, EC 2.3.2.13; trypsin, EC 3.4.21.4; vibriolysin (hemagglutinin(HA)/protease), EC 3.4.24.25.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Streptomyces/enzimologia , Termolisina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Catálise , Cristalografia por Raios X , Endopeptidases/química , Metaloendopeptidases/química , Metaloproteases/química , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Termolisina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA