Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Anal Chem ; 96(9): 3787-3793, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38308565

RESUMO

Organic metallic nanohybrids (NHs), in which many small metal nanoparticles are encapsulated within a conductive polymer matrix, are useful as sensitive electrochemical labels because the constituents produce characteristic oxidation current responses. Gold NHs, consisting of gold nanoparticles and poly(m-toluidine), and copper NHs, consisting of copper nanoparticles and polyaniline, did not interfere with each other in terms of the electrochemical signals obtained on the same electrode. Antibodies were introduced into these NHs to function as electrochemical labels for targeting specific bacteria. Electrochemical measurements using screen-printed electrodes dry-fixed with NH-labeled bacterial cells enabled the estimation of bacterial species and number within minutes, based on the distinct current response of the labels. Our proposed method achieved simultaneous detection of enterohemorrhagic Escherichia coli and Staphylococcus aureus in a real sample. These NHs will be powerful tools as electrochemical labels and are expected to be useful for rapid testing in food and drug-related manufacturing sites.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Cobre , Anticorpos , Oxirredução , Técnicas Eletroquímicas , Eletrodos , Técnicas Biossensoriais/métodos , Limite de Detecção
2.
Analyst ; 149(8): 2291-2298, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38511612

RESUMO

Building a high-performance sensing platform is the key to developing sensitive sensors. Herein, a highly sensitive self-powered electrochemical sensor (SPES) was constructed using a WO3·H2O film as the cathode prepared by a hydrothermal method and Zn as the anode, and it could be applied to sensitive detection of microcystin (MC-RR). The WO3·H2O film with a larger specific surface area could boost the oxygen reduction reaction (ORR), which could achieve signal amplification and significantly increase the sensitivity of the sensors. Under the optimal conditions, there was a good linear relationship between the increased electrical power density and the logarithm of MC-RR concentration with a detection limit of 1.31 × 10-15 M (S/N = 3). This method had good anti-interference ability and stability when applied to the determination of MC-RR content in actual samples, which could boost the potential application of electrochemical sensors in the field of environmental monitoring.

3.
Chem Pharm Bull (Tokyo) ; 72(3): 253-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432906

RESUMO

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of drug susceptibility. Considering that the oxidized form of tetrazolium, which has excellent cell membrane permeability, changes to the insoluble reduced form formazan inside the cell, the number of viable cells was estimated based on the reduction current of the tetrazolium remaining in the bacterial suspension. Dissolved oxygen is an important component of bacterial activity. However, it interferes with the electrochemical response of tetrazolium. We estimated the number of viable bacteria in the suspension based on potential-selective current responses that were not affected by dissolved oxygen. Based on solubility, cell membrane permeability, and characteristic electrochemical properties of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium, we developed a method for rapidly measuring viable bacteria within one-fifth of the time required by conventional colorimetric methods for drug susceptibility testing.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Penicilina G , Oxigênio , Sais de Tetrazólio
4.
Anal Chem ; 95(34): 12595-12599, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37522904

RESUMO

Self-powered electrochemical sensors, which can function without external electricity, are incredibly valuable in the realm of sensing. However, most of the present testing methods are normally confined to high environmental requirements, restricted lighting conditions, and temperature differences. Herein, an innovative self-powered electrochemical sensor was successfully developed based on hydrovoltaic effect coupling with capacitor amplification. Due to the combined merits from the two-dimensional transition metal carbides and nitrides (MXene)-polyaniline (PANI) with high surface potential and good hydrophilicity, and the capacitor amplification strategy, the device could harvest electric energy from water evaporation and displayed a high short circuit current value. Under optimal conditions, the proposed self-powered electrochemical sensor presented excellent sensitivity and high specificity for enrofloxacin (ENR) detection in the concentration range from 1 fM to 1 nM with a detection limit of 0.585 fM. Such a proposed sensor also has the advantages of environmental friendliness and ease of use, which is an ideal choice for accurately and precisely detecting ENR in real samples. The mode of such electrochemical detection outlined in this technical note implements a breakthrough in designing self-powered electrochemical sensors, providing a rational basis for development of a diversified sensing platform.

5.
Anal Chem ; 95(33): 12358-12364, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605797

RESUMO

This study focused on the electrochemical properties of tetrazolium salts to develop a simple method for evaluating viable bacterial counts, which are indicators of hygiene control at food and pharmaceutical manufacturing sites. Given that the oxidized form of 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which has excellent cell membrane permeability, changes to the insoluble reduced form of formazan inside the cell, the number of viable cells was estimated by focusing on the reduction current of MTT remaining in the suspension. Dissolved oxygen is an important substance for bacterial activity; however, it interferes with the electrochemical response of MTT. We investigated the electrochemical properties of MTT to obtain a potential-selective current response that was not affected by dissolved oxygen. Real-time observation of viable bacteria in suspension revealed that uptake of MTT into bacteria was completed within 10 min, including the lag period. In addition, we observed that the current response depends on viable cell density regardless of the bacterial species present. Our method enables a rapid estimation of the number of viable bacteria, making it possible to confirm the safety of food products before they are shipped from the factory and thereby prevent food poisoning.


Assuntos
Bactérias , Brometos , Sais de Tetrazólio , Transporte Biológico , Oxigênio
6.
Analyst ; 148(18): 4470-4478, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574902

RESUMO

In this work, a super-sensitive electrochemiluminescence (ECL) aptamer sensor was constructed using a multiple signal amplification strategy to realize ultra-sensitive detection of di-(2-ethylhexyl) phthalate (DEHP). The incorporation of a highly efficient electrocatalytic metal-organic framework (NH2-Zr-MOF) and graphdiyne (GDY) composite has significantly enhanced the overall electrochemically active surface area, facilitating electron transfer during the entire electrochemical reaction process, and the large number of pores in graphdiyne and NH2-Zr-MOF limited a series of redox reactions within a certain range. This resulted in the generation of a greater number of SO4˙- radicals, thereby boosting the ECL intensity of the GDY in the K2S2O8 system. To increase the performance of the sensor even further, sodium ascorbate (NaAsc) as an accelerator was added to the co-reactant system. Additionally, nitrogen micro-nano bubbles with higher stability and stronger mass transfer have been introduced into the ECL system for the first time. Based on these, the aptamer as the recognition element realized the ultra-sensitive detection of DEHP in the linear range of 1.0 × 10-12 to 1.0 × 10-4 mg mL-1 with the limit of detection (LOD) of 2.43 × 10-13 mg mL-1. In summary, we have utilized the electrocatalytic activity of the porous MOF and the reducing capability of sodium ascorbate to enhance the ECL emission of GDY, which has been successfully applied to the detection of DEHP in water samples.

7.
Anal Chem ; 94(31): 10984-10990, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877190

RESUMO

This paper describes a simple strategy to identify bacteria using the optical properties of the nanohybrid structures (NHs) of polymer-coated metal nanoparticles (NPs). NHs, in which many small NPs are encapsulated in polyaniline particles, are useful optical labels because they produce strong scattered light. The light-scattering characteristics of NHs are strongly dependent on the constituent metal elements of NPs. Gold NHs (AuNHs), silver NHs (AgNHs), and copper NHs (CuNHs) produce white, reddish, and bluish scattered light, respectively. Moreover, unlike NPs, the color of the scattered light does not change even when NHs are aggregated. Introducing an antibody into NHs induces antigen-specific binding to cells, enabling the identification of bacteria based on light scattering. Multiple bacterial species adsorbed on the slide can be identified within a single field of view under a dark field microscope based on the color of the scattered light. Therefore, it is a useful development for safety risk assessments at manufacturing sites, such as those for foods, beverages, and drugs, and environmental surveys that require rapid detection of multiple bacteria.


Assuntos
Ouro , Nanopartículas Metálicas , Bactérias , Cobre/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química
8.
Analyst ; 147(11): 2355-2360, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35420076

RESUMO

Gold nanoparticles (AuNPs) are chemically stable and serve as excellent labels because their characteristic red coloration based on the localized surface plasmon resonance (LSPR) does not fade. However, it is necessary to control the structure of AuNPs to use them as labels for various analyses, because their optical properties depend strongly on their size, shape, and state of aggregation. In this study, we developed gold nanostructures (AuNSs) by encapsulating many small AuNPs within a polymer for scattering light-based bacterial detection. The AuNSs consisting of many small nanoparticles provided stronger scattered light intensity than a single AuNP of the same particle size. We found that the aggregation of the AuNSs enhanced the scattering light intensity, depending strongly on their aggregation states, and did not affect the wavelength of the scattering light observed under a dark-field microscope. By specifically binding the antibody-introduced AuNSs to the antigen on the bacterial surface, it was possible to label the target bacteria and detect them based on their light scattering characteristics. In addition, to improve the accuracy of the selective identification of the cells of interest, labels based on scattered light should ideally have a fixed wavelength of scattered light with high intensity. From these perspectives, we developed a method of constructing an optical antenna on the surface of target bacterial cells using antibody-introduced NSs.


Assuntos
Ouro , Nanopartículas Metálicas , Bactérias , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Ressonância de Plasmônio de Superfície/métodos
9.
Mikrochim Acta ; 189(9): 313, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922727

RESUMO

A ternary composite material with Au, Co-based organic frameworks (ZIF-67) and perylene derivatives (PTCD-cys) has been synthesized for identification of synthetic cannabinoids. Through contact with Au-S, Au-ZIF-67 increased electrochemiluminescence (ECL) sensitivity and stability and efficiently catalyzed the ECL of PTCD-cys. Compared with the ECL response of PTCD-cys monomer, the ECL signal value of the composite material was significantly increased, and the onset potential of Au-ZIF-67/PTCD-cys favorably shifted more than that of PTCD-cys/GCE. When the target cannabinoid molecule RCS-4 appeared, Au-ZIF-67 captured and immobilized it on the sensor surface by adsorption to achieve target-induced self-enrichment of RCS-4. Under optimal conditions, the ECL sensor was found to be linearly related to the logarithm of the RCS-4 concentration ranging from 3.1 × 10-15 to 3.1 × 10-9 mol/L with a detection limit (LOD) of 6.0 × 10-16 mol/L (S/N = 3). The approach had the advantages of being simple to use, having a high sensitivity, a wide detection range, and good stability, making it a novel platform for RSC-4 detection in public health safety monitoring.


Assuntos
Canabinoides , Nanopartículas Metálicas , Catálise , Técnicas Eletroquímicas , Ouro , Medições Luminescentes
10.
Anal Chem ; 91(22): 14401-14406, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31631651

RESUMO

Efficient utilization of bacterial bioresources requires quantitative evaluation of metabolic activity in living bacterial cells. Shewanella oneidensis MR-1 transfers electrons generated within the cell to the extracellular environment via the cytochrome complex in the inner/outer membranes and is one of the most useful bacteria for the recovery of metals, treatment of wastewater, and preparation of microbial fuel cells. Here, we performed a quantitative evaluation of electron generation based on individual enzyme reactions in S. oneidensis MR-1. By using potentiometric measurements, we have examined intracellular electron generation in bacterial suspensions of S. oneidensis supplemented with different carbon sources (formate, lactate, pyruvate, or acetyl coenzyme A) or ferricyanide, which was almost completely reduced to ferrocyanide during the incubation without affecting bacterial cell viability. The amount of electron generation strongly depended on the nature of the carbon source. Analysis of the obtained kinetic parameters of intracellular electron generation demonstrated that formate was the most effective carbon source, as it enabled 2.5-fold faster electron generation rate than other sources. We established that the respective contributions of lactate dehydrogenase, pyruvate dehydrogenase/pyruvate-formate-lyase, and tricarboxylic acid cycle to lactate metabolism were 62%, 31%, and 7.4%, correspondingly. Furthermore, we clarified that electrons may be generated at 1.6 × 10-12 A s-1 by ideal metabolism in a single living cell. These findings establish the basis for biological strategies of electron production and facilitate the utilization of S. oneidensis as a bioresource in practical applications, including energy production, environmental purification, and recovery of useful materials.


Assuntos
Proteínas de Bactérias/metabolismo , Shewanella/metabolismo , Acetilcoenzima A/metabolismo , Biocatálise , Transporte de Elétrons , Elétrons , Formiatos/metabolismo , Cinética , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Shewanella/enzimologia
11.
Anal Chem ; 91(20): 12793-12798, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31424202

RESUMO

Bacterial cells possessing a certain zeta potential are immobilized by electrochemical deposition within conducting polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy). These conducting polymers serve as a biocompatible matrix for trapping bacteria on an indium-tin-oxide (ITO)-coated glass substrate. The biological functions of bacteria were not affected by the chemical structure and electrical conductivity of the matrix. The viability of the bacteria on the ITO glass was monitored by dark-field microscopy. The cell density of Escherichia coli increased logarithmically during incubation in nutrient broth medium, leading to definitive formation of a biofilm on PPy. The facultative E. coli anaerobe sustains metabolism under aerobic and anaerobic conditions, but proliferates more extensively in the presence of oxygen. The conducting PPy film also facilitates electrochemical evaluation of the respiratory activity of bacterial cells and establishes that facultative anaerobic and aerobic bacteria exhibit similar respiratory activities under aerobic conditions.


Assuntos
Técnicas Eletroquímicas/métodos , Escherichia coli/metabolismo , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Escherichia coli/crescimento & desenvolvimento , Vidro/química , Pirróis/química , Compostos de Estanho/química
12.
Anal Chem ; 90(6): 4098-4103, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29490137

RESUMO

Real-time evaluation of bacterial viability is important for various purposes such as hygiene management, development of antibacterial agents, and effective utilization of bacterial resources. Here, we demonstrate a simple procedure for evaluating bacterial viability using gold nanoparticles (Au NPs). The color of bacterial suspensions containing Au NPs strongly depended on the bacterial viability. We found that the dispersion state of Au NPs affected the color of the suspension, based on the interaction of Au NPs with substances secreted by the bacteria. This color change was easily recognized with the naked eye, and viability was accurately determined by measuring the absorbance at a specific wavelength. This method was applicable to various bacterial species, regardless of whether they were Gram-positive or Gram-negative.


Assuntos
Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Viabilidade Microbiana , Bacillus subtilis/citologia , Ácido Cítrico/química , Cisteamina/química , Dimerização , Escherichia coli/citologia , Nanopartículas Metálicas/ultraestrutura , Staphylococcus aureus/citologia
13.
Anal Chem ; 90(18): 10903-10909, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30118207

RESUMO

In this study, electrochemical detection of viable bacterial cells was performed using a tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which was converted to an insoluble and redox active formazan compound in viable microbial cells. The insolubility of this formazan was effectively exploited as a surface-confined redox event. An indium-tin-oxide electrode was applied to a microbial suspension that had been incubated with MTT and was heated to dry for the extraction and adsorption of formazan. Drying led to the appearance of a distinctive voltammetric oxidation peak at +0.1 V vs Ag|AgCl, the magnitude of which was successfully correlated to the number of viable microbes in the suspension. Thus, the electrochemical detection of formazan was effectively coupled with the thermal lysis of microbes. It is also noteworthy that this lysis-adsorption technique was highly selective to the hydrophobic formazan molecule due to the removal of hydrophilic cell components during equilibration in a phosphate buffer before voltammetric measurement. This technique was capable of detecting microbes above 2.8 × 101 CFU mL-1 and required only a 1 h incubation. The results of this study indicate that the sensitivity of the present technique is up to 10 000-fold higher than that of MTT colorimetry. The higher sensitivity was mainly ascribed to the concentration of the microbially produced formazan on the electrode by thorough desiccation of the bacterial suspension.


Assuntos
Bactérias/citologia , Técnicas Eletroquímicas/instrumentação , Viabilidade Microbiana , Sais de Tetrazólio/química , Tiazóis/química , Técnicas Bacteriológicas/instrumentação , Eletrodos , Desenho de Equipamento , Oxirredução , Solubilidade
14.
Analyst ; 143(7): 1568-1574, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29379911

RESUMO

Bacterial detection has attracted substantial interest in recent years owing to its importance in biology, medical care, drug discovery, and public health. For such applications, bacterial cell-imprinting technologies are regarded as potential methods, as they can fabricate artificial tailor-made receptors for cellular recognition. In comparison to conventional methods, which generally require a few days for bacterial determination, cell-imprinted polymers can save a substantial amount of time. Here, we report a high-throughput bacterial detection method based on a cell-imprinted 96-well microplate. The fabrication of the bacterial cell-imprinted polypyrrole and nafion complex was accomplished on a gold nanoparticle-coated microplate. The cell-imprinted polymer complex on the microplate can spontaneously rebind and specifically detect target cells with high selectivity in a short time frame (within 30 min). Furthermore, the microplates could discriminate particular target Escherichia coli O157:H7 cells from bacterial mixtures. This simple method may be used for a variety of applications such as clinical testing, food safety, and continuous environmental monitoring.


Assuntos
Escherichia coli O157/isolamento & purificação , Ouro , Nanopartículas Metálicas , Polímeros de Fluorcarboneto , Polímeros , Pirróis
15.
Mikrochim Acta ; 185(10): 465, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30225738

RESUMO

A rapid and highly sensitive method is described for the detection of enterohemorrhagic Escherichia coli O157:H7. An organic-inorganic nanostructure in which numerous gold nanoparticles (AuNPs) are enclosed with polyaniline (PANI) was utilized as an electrochemical label. The nanostructure showed (a) strong light scattering intensity due to the coupling effect of the surface plasmon resonance based on the presence of AuNPs, and (b) high electrochemical response due to the redox activity of PANI. To achieve selectivity, antibody against E. coli O157:H7 was immobilized on the surface of the nanostructure. The method exploits the combination of strong adsorption of bacterial cells onto the indium-tin-oxide (ITO) glass electrode without any special processing and specific binding of the nanostructured label to E. coli O157:H7. This enables the electrochemical detection of a single cell on the ITO electrode. The electrochemical response to E. coli O157:H7 was 30-fold higher than that to other types of bacteria. This procedure can be applied to the determination of E. coli O157:H7 even in the presence of other bacteria. Graphical abstract Schematic of a voltammetric immunoassay for Escherichia coli O157:H7 by using a nanocomposite consisting of gold nanoparticles and polyaniline on an ITO electrode.


Assuntos
Eletroquímica/instrumentação , Escherichia coli O157/citologia , Índio/química , Nanopartículas Metálicas/química , Análise de Célula Única/instrumentação , Estanho/química , Eletrodos , Escherichia coli O157/isolamento & purificação , Ouro/química , Modelos Moleculares , Conformação Molecular
16.
Anal Chem ; 89(8): 4680-4684, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28345351

RESUMO

Nanometer-sized composite particles, which consisted of gold nanoparticles encapsulated by an N-isopropylacrylamide copolymer, were successfully synthesized using a one-step process. Shape complementary cavities of the O157-antigen were formed on the composite utilizing temperature-dependent affinity changes of the copolymer. The composite bound to enterohemorrhagic Escherichia coli (E. coli) O157 at 298 K and enhanced light-scattering intensity of the cell due to the optical properties of the gold nanoparticles. Moreover, the composite showed excellent selectivity (>15) against other types of E. coli such as O26 and O Rough. Recognition of the O157-antigen ceased upon heating to 313 K but was restored upon cooling to 298 K. During repeated temperature cycling around the phase transition temperature of the copolymer (305 K), the composite reproducibly showed recognition behavior at 298 K. The binding ability of the composite could be switched reversibly. Therefore, it was concluded that the molecular structure of the O157-antigen was memorized by the composite, rather than being molded into it. This technique is applicable not only for the detection of a target bacterium but also for an identification of new bacterial threats by the simple formation of the specific antigen-imprinted composite.


Assuntos
Nanocompostos/química , Antígenos O/análise , Polímeros/química , Espectrofotometria , Escherichia coli O157/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Temperatura
17.
Anal Chem ; 87(7): 4042-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25782716

RESUMO

Understanding the biology of bacteria is critical for exploiting their beneficial properties and for preventing and treating bacterial diseases. Nanobioscience is an area that has recently seen major scientific progress. Here, we demonstrate that a raspberry-shaped nanostructure with a high density of gold nanoparticles acts like an excellent antenna due to its optical properties, which permit sensitive detection and analysis of bacterial cells. By using antibodies, these nanoantennas can be engineered to recognize only specific bacterial species. This system provides a new technique that will allow for more sensitive detection of specific bacteria.


Assuntos
Escherichia coli/química , Escherichia coli/isolamento & purificação , Nanoestruturas/química , Nanotecnologia/métodos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/isolamento & purificação , Escherichia coli/citologia , Pseudomonas aeruginosa/citologia
18.
Anal Chem ; 87(16): 8416-23, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26218886

RESUMO

We have developed a novel bacterial detection technique by desiccating a bacterial suspension deposited on an electrode. It was also found that the use of an indium-tin-oxide (ITO) electrode dramatically improved the resolution of the voltammogram, allowing us to observe two pairs of redox peaks, each assigned to the adsorption of isoprenoid ubiquinone (UQn) and menaquinone (MKn), which were present in the bacterial cell envelopes, giving midpeak potentials of -0.015 and -0.25 V versus Ag|AgCl|saturated KCl| at pH 7.0, respectively. Most of the microorganisms classified in both the Gram-negative and -positive bacteria gave well-defined redox peaks, demonstrating that this procedure made the detection of the quinones possible without solvent extraction. It has been demonstrated that the present technique can be used not only for the detection of bacteria, but also for profiling of the isoprenoid quinones, which play important roles in electron and proton transfer in microorganisms. In this respect, the present technique provides a much more straightforward way than the solvent extraction in that one sample can be prepared in 1 min by heat evaporation of a suspension containing the targeted bacteria, which has been applied on the ITO electrode.


Assuntos
Técnicas Eletroquímicas , Bactérias Gram-Positivas/química , Quinonas/análise , Eletrodos , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Compostos de Estanho/química , Vitamina K 2/análise
19.
Anal Chem ; 87(7): 4047-52, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25760406

RESUMO

In our study, various bacteria, including Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Acinetobacter calcoaceticus, Serratia marcescens, Shewanella oneidensis) and Gram-positive (Bacillus subtilis) bacteria, were straightforwardly immobilized into the conducting polymers (CPs) by electrochemical deposition. The doping state of bacteria in the polymer films (polypyrrole and poly(3,4-ethylenedioxythiophene)) varied according to the polymerization conditions. The viability of bacteria in the polymers and of those adsorbed on various substrates was evaluated. The activity of bacteria doped on the polymer film was evaluated by cyclic voltammetry in a thin-layer cell.


Assuntos
Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Polímeros/química , Pirróis/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Técnicas Eletroquímicas , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Polímeros/metabolismo , Pirróis/metabolismo
20.
Anal Chem ; 86(10): 4977-81, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24766573

RESUMO

Conducting magnetic microbeads were successfully fabricated through a simple procedure that involves coating magnetic microbeads with gold nanoparticles. The formation of a gold layer on the bead enabled the simple introduction of a biotin probe onto the bead, resulting in the binding capacity with streptavidin being 10 times greater than that of commercially available biotin-binding magnetic beads. In addition to the high recovery via magnetic forces and high dispersibility in the sample solution, the accumulation of highly conductive beads on the electrode resulted in the amplification of the electrochemical response of the detection system. This paper reports the efficient collection and highly sensitive detection of target biomolecules using Au-coated magnetic microbeads.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Biotina/química , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA