RESUMO
Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.
Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Exoma , Doenças Raras , Humanos , Variações do Número de Cópias de DNA/genética , Doenças Raras/genética , Doenças Raras/diagnóstico , Exoma/genética , Masculino , Feminino , Estudos de Coortes , Testes Genéticos/métodosRESUMO
BACKGROUND: Genetic variants that cause rare disorders may remain elusive even after expansive testing, such as exome sequencing. The diagnostic yield of genome sequencing, particularly after a negative evaluation, remains poorly defined. METHODS: We sequenced and analyzed the genomes of families with diverse phenotypes who were suspected to have a rare monogenic disease and for whom genetic testing had not revealed a diagnosis, as well as the genomes of a replication cohort at an independent clinical center. RESULTS: We sequenced the genomes of 822 families (744 in the initial cohort and 78 in the replication cohort) and made a molecular diagnosis in 218 of 744 families (29.3%). Of the 218 families, 61 (28.0%) - 8.2% of families in the initial cohort - had variants that required genome sequencing for identification, including coding variants, intronic variants, small structural variants, copy-neutral inversions, complex rearrangements, and tandem repeat expansions. Most families in which a molecular diagnosis was made after previous nondiagnostic exome sequencing (63.5%) had variants that could be detected by reanalysis of the exome-sequence data (53.4%) or by additional analytic methods, such as copy-number variant calling, to exome-sequence data (10.8%). We obtained similar results in the replication cohort: in 33% of the families in which a molecular diagnosis was made, or 8% of the cohort, genome sequencing was required, which showed the applicability of these findings to both research and clinical environments. CONCLUSIONS: The diagnostic yield of genome sequencing in a large, diverse research cohort and in a small clinical cohort of persons who had previously undergone genetic testing was approximately 8% and included several types of pathogenic variation that had not previously been detected by means of exome sequencing or other techniques. (Funded by the National Human Genome Research Institute and others.).
Assuntos
Variação Genética , Doenças Raras , Sequenciamento Completo do Genoma , Feminino , Humanos , Masculino , Estudos de Coortes , Exoma , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/etnologia , Doenças Genéticas Inatas/genética , Testes Genéticos , Genoma Humano , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/etnologia , Doenças Raras/genética , Análise de Sequência de DNA , Criança , Adolescente , Adulto Jovem , AdultoRESUMO
BACKGROUND: Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6, in order to help define the specific features of disease and further facilitate drug development and clinical trials design. METHODS: the study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their impact on protein function. In depth re-analysis of light and electron microscopy specimens for 9 available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP. RESULTS: Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. The majority of patients presented in adolescence or early adulthood but with ample variation (average 22, SD ± 14 years), with frequent progression to kidney failure but with variability in time between presentation and ESKD. CONCLUSIONS: This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP.
RESUMO
Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.
Assuntos
Proteínas de Membrana , Síndrome Nefrótica , Podócitos , Animais , Feminino , Masculino , Camundongos , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Síndrome Nefrótica/genética , Síndrome Nefrótica/terapia , Fenótipo , Podócitos/metabolismoRESUMO
Focal segmental glomerulosclerosis (FSGS) is the main pathology underlying steroid-resistant nephrotic syndrome (SRNS) and a leading cause of chronic kidney disease. Monogenic forms of pediatric SRNS are predominantly caused by recessive mutations, while the contribution of de novo variants (DNVs) to this trait is poorly understood. Using exome sequencing (ES) in a proband with FSGS/SRNS, developmental delay, and epilepsy, we discovered a nonsense DNV in TRIM8, which encodes the E3 ubiquitin ligase tripartite motif containing 8. To establish whether TRIM8 variants represent a cause of FSGS, we aggregated exome/genome-sequencing data for 2,501 pediatric FSGS/SRNS-affected individuals and 48,556 control subjects, detecting eight heterozygous TRIM8 truncating variants in affected subjects but none in control subjects (p = 3.28 × 10-11). In all six cases with available parental DNA, we demonstrated de novo inheritance (p = 2.21 × 10-15). Reverse phenotyping revealed neurodevelopmental disease in all eight families. We next analyzed ES from 9,067 individuals with epilepsy, yielding three additional families with truncating TRIM8 variants. Clinical review revealed FSGS in all. All TRIM8 variants cause protein truncation clustering within the last exon between residues 390 and 487 of the 551 amino acid protein, indicating a correlation between this syndrome and loss of the TRIM8 C-terminal region. Wild-type TRIM8 overexpressed in immortalized human podocytes and neuronal cells localized to nuclear bodies, while constructs harboring patient-specific variants mislocalized diffusely to the nucleoplasm. Co-localization studies demonstrated that Gemini and Cajal bodies frequently abut a TRIM8 nuclear body. Truncating TRIM8 DNVs cause a neuro-renal syndrome via aberrant TRIM8 localization, implicating nuclear bodies in FSGS and developmental brain disease.
Assuntos
Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glomerulosclerose Segmentar e Focal/genética , Espaço Intranuclear/metabolismo , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Proteínas do Tecido Nervoso/genética , Adulto , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Códon sem Sentido , Deficiências do Desenvolvimento/metabolismo , Epilepsia/metabolismo , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Podócitos/metabolismo , Sequenciamento do ExomaRESUMO
Lower urinary tract dysfunction (LUTD) can manifest as a spectrum of voiding symptoms in childhood, including urinary urgency, frequency, hesitancy, and incontinence. In severe cases, it can lead to frequent urinary tract infections, hydronephrosis, kidney scarring, and chronic kidney disease. Non-neurogenic neurogenic bladder (NNNB) is a diagnosis of exclusion in which children develop discoordination between the detrusor smooth muscle and external urethral sphincter in the absence of neurological or obstructive lesions, resulting in severe LUTD. Historically, such disorders of voiding were thought to result from behavioral maladaptation. However, it is now increasingly recognized that some individuals may have an underlying genetic etiology for their symptoms. Here, we performed exome sequencing for five probands with NNNB or other forms of severe LUTD, and we identified two individuals with monogenic etiologies for their symptoms. One individual had a homozygous exon 9 deletion in HPSE2 and another had a homozygous single amino acid deletion (p.Gly167del) in ARL6. We performed PCR experiments to identify the breakpoints of the HPSE2 exon 9 deletion and implicate microhomology-mediated end joining as a potential mechanism by which the deletion arose. These findings suggest that genetic testing should be considered for children with severe LUTD.
RESUMO
BACKGROUND: Steroid-resistant nephrotic syndrome is the second leading cause of chronic kidney disease among patients < 25 years of age. Through exome sequencing, identification of > 65 monogenic causes has revealed insights into disease mechanisms of nephrotic syndrome (NS). METHODS: To elucidate novel monogenic causes of NS, we combined homozygosity mapping with exome sequencing in a worldwide cohort of 1649 pediatric patients with NS. RESULTS: We identified homozygous missense variants in MYO1C in two unrelated children with NS (c.292C > T, p.R98W; c.2273 A > T, p.K758M). We evaluated publicly available kidney single-cell RNA sequencing datasets and found MYO1C to be predominantly expressed in podocytes. We then performed structural modeling for the identified variants in PyMol using aligned shared regions from two available partial structures of MYO1C (4byf and 4r8g). In both structures, calmodulin, a common regulator of myosin activity, is shown to bind to the IQ motif. At both residue sites (K758; R98), there are ion-ion interactions stabilizing intradomain and ligand interactions: R98 binds to nearby D220 within the myosin motor domain and K758 binds to E14 on a calmodulin molecule. Variants of these charged residues to non-charged amino acids could ablate these ionic interactions, weakening protein structure and function establishing the impact of these variants. CONCLUSION: We here identified recessive variants in MYO1C as a potential novel cause of NS in children.
Assuntos
Sequenciamento do Exoma , Mutação de Sentido Incorreto , Miosina Tipo I , Síndrome Nefrótica , Humanos , Miosina Tipo I/genética , Miosina Tipo I/química , Síndrome Nefrótica/genética , Masculino , Feminino , Criança , Homozigoto , Proteinúria/genética , Genes Recessivos , Pré-Escolar , Adolescente , Podócitos/metabolismo , Modelos MolecularesRESUMO
BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort. METHODS: We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation. RESULTS: We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing. CONCLUSIONS: We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information.
Assuntos
Síndrome Nefrótica , Adulto , Criança , Humanos , Adulto Jovem , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Predisposição Genética para Doença , Homozigoto , Mutação , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Síndrome Nefrótica/congênito , Deleção de SequênciaRESUMO
BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.
Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genéticaRESUMO
The discovery of >60 monogenic causes of nephrotic syndrome (NS) has revealed a central role for the actin regulators RhoA/Rac1/Cdc42 and their effectors, including the formin INF2. By whole-exome sequencing (WES), we here discovered bi-allelic variants in the formin DAAM2 in four unrelated families with steroid-resistant NS. We show that DAAM2 localizes to the cytoplasm in podocytes and in kidney sections. Further, the variants impair DAAM2-dependent actin remodeling processes: wild-type DAAM2 cDNA, but not cDNA representing missense variants found in individuals with NS, rescued reduced podocyte migration rate (PMR) and restored reduced filopodia formation in shRNA-induced DAAM2-knockdown podocytes. Filopodia restoration was also induced by the formin-activating molecule IMM-01. DAAM2 also co-localizes and co-immunoprecipitates with INF2, which is intriguing since variants in both formins cause NS. Using in vitro bulk and TIRF microscopy assays, we find that DAAM2 variants alter actin assembly activities of the formin. In a Xenopus daam2-CRISPR knockout model, we demonstrate actin dysregulation in vivo and glomerular maldevelopment that is rescued by WT-DAAM2 mRNA. We conclude that DAAM2 variants are a likely cause of monogenic human SRNS due to actin dysregulation in podocytes. Further, we provide evidence that DAAM2-associated SRNS may be amenable to treatment using actin regulating compounds.
Assuntos
Actinas/metabolismo , Variação Genética , Proteínas dos Microfilamentos/genética , Síndrome Nefrótica/genética , Proteínas rho de Ligação ao GTP/genética , Alelos , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Citoplasma/metabolismo , Forminas/metabolismo , Humanos , Rim/metabolismo , Glomérulos Renais/metabolismo , Mutação de Sentido Incorreto , Podócitos/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Sequenciamento do Exoma , XenopusRESUMO
PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.
Assuntos
Nefrolitíase , Receptores Purinérgicos P2 , Humanos , Oxalato de Cálcio , Nefrolitíase/genética , Mutação de Sentido Incorreto/genética , Transportadores de Sulfato/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismoRESUMO
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of chronic kidney disease that manifests in children. To date ~23 different monogenic causes have been implicated in isolated forms of human CAKUT, but the vast majority remains elusive. In a previous study, we identified a homozygous missense variant in E26 transformation-specific (ETS) Variant Transcription Factor 4 (ETV4) causing CAKUT via dysregulation of the transcriptional function of ETV4, and a resulting abrogation of GDNF/RET/ETV4 signaling pathway. This CAKUT family remains the only family with an ETV4 variant reported so far. Here, we describe one additional CAKUT family with a homozygous truncating variant in ETV4 (p.(Lys6*)) that was identified by exome sequencing. The variant was found in an individual with isolated CAKUT displaying posterior urethral valves and renal dysplasia. The newly identified stop variant conceptually truncates the ETS_PEA3_N and ETS domains that regulate DNA-binding transcription factor activity. The variant has never been reported homozygously in the gnomAD database. To our knowledge, we here report the first CAKUT family with a truncating variant in ETV4, potentially causing the isolated CAKUT phenotype observed in the affected individual.
Assuntos
Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Criança , Humanos , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/metabolismo , Refluxo Vesicoureteral/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismoRESUMO
Neurogenic bladder is caused by disruption of neuronal pathways regulating bladder relaxation and contraction. In severe cases, neurogenic bladder can lead to vesicoureteral reflux, hydroureter, and chronic kidney disease. These complications overlap with manifestations of congenital anomalies of the kidney and urinary tract (CAKUT). To identify novel monogenic causes of neurogenic bladder, we applied exome sequencing (ES) to our cohort of families with CAKUT. By ES, we have identified a homozygous missense variant (p.Gln184Arg) in CHRM5 (cholinergic receptor, muscarinic, 5) in a patient with neurogenic bladder and secondary complications of CAKUT. CHRM5 codes for a seven transmembrane-spanning G-protein-coupled muscarinic acetylcholine receptor. CHRM5 is shown to be expressed in murine and human bladder walls and is reported to cause bladder overactivity in Chrm5 knockout mice. We investigated CHRM5 as a potential novel candidate gene for neurogenic bladder with secondary complications of CAKUT. CHRM5 is similar to the cholinergic bladder neuron receptor CHRNA3, which Mann et al. published as the first monogenic cause of neurogenic bladder. However, functional in vitro studies did not reveal evidence to strengthen the status as a candidate gene. Discovering additional families with CHRM5 variants could help to further assess the genes' candidate status.
Assuntos
Bexiga Urinaria Neurogênica , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Humanos , Camundongos , Animais , Bexiga Urinaria Neurogênica/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Rim/anormalidades , Camundongos KnockoutRESUMO
The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed the binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18 and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteômica/métodos , Transdução de Sinais/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Animais , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Humanos , Camundongos , Mutação , Gravidez , Ligação Proteica , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Transfecção , Ureter/embriologia , Ureter/metabolismo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Refluxo Vesicoureteral/genética , Refluxo Vesicoureteral/metabolismoRESUMO
AIM: The earlier the onset of proteinuria, the higher the incidence of genetic forms. Therefore, we aimed to analyse the spectrum of monogenic proteinuria in Egyptian children presenting at age <2 years. METHODS: The results of 27-gene panel or whole-exome sequencing were correlated with phenotype and treatment outcomes in 54 patients from 45 families. RESULTS: Disease-causing variants were identified in 29/45 (64.4%) families. Mutations often occurred in three podocytopathy genes: NPHS1, NPHS2 and PLCE1 (19 families). Some showed extrarenal manifestations. Additionally, mutations were detected in 10 other genes, including novel variants of OSGEP, SGPL1 and SYNPO2. COL4A variants phenocopied isolated steroid-resistant nephrotic syndrome (2/29 families, 6.9%). NPHS2 M1L was the single most common genetic finding beyond the age of 3 months (4/18 families, 22.2%). Biopsy results did not correlate with genotypes (n = 30). On renin-angiotensin-aldosterone system antagonists alone, partial and complete remission occurred in 3/24 (12.5%) patients with monogenic proteinuria each, whereas 6.3% (1/16) achieved complete remission on immunosuppression. CONCLUSION: Genotyping is mandatory to avoid biopsies and immunosuppression when proteinuria presents at age <2 years. Even with such a presentation, COL4A genes should be included. NPHS2 M1L was prevalent in Egyptian children (4 months-2 years) with proteinuria, demonstrating precision diagnostic utility.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Síndrome Nefrótica , Humanos , Remissão Espontânea , Egito , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome Nefrótica/terapia , Proteinúria/genética , MutaçãoRESUMO
Genetic and phenotypic heterogeneity and the lack of sufficiently large patient cohorts pose a significant challenge to understanding genetic associations in rare disease. Here we identify Bsnd (alias Barttin) as a genetic modifier of cystic kidney disease in Joubert syndrome, using a Cep290-deficient mouse model to recapitulate the phenotypic variability observed in patients by mixing genetic backgrounds in a controlled manner and performing genome-wide analysis of these mice. Experimental down-regulation of Bsnd in the parental mouse strain phenocopied the severe cystic kidney phenotype. A common polymorphism within human BSND significantly associates with kidney disease severity in a patient cohort with CEP290 mutations. The striking phenotypic modifications we describe are a timely reminder of the value of mouse models and highlight the significant contribution of genetic background. Furthermore, if appropriately managed, this can be exploited as a powerful tool to elucidate mechanisms underlying human disease heterogeneity.
Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Anormalidades do Olho/genética , Genes Modificadores , Doenças Renais Císticas/genética , Retina/anormalidades , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Nefropatias , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de DoençaRESUMO
Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.
Assuntos
Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Criança , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Proteínas RoundaboutRESUMO
Nephronophthisis-related ciliopathies (NPHP-RCs) are a group of inherited diseases that are associated with defects in primary cilium structure and function. To identify genes mutated in NPHP-RC, we performed homozygosity mapping and whole-exome sequencing for >100 individuals, some of whom were single affected individuals born to consanguineous parents and some of whom were siblings of indexes who were also affected by NPHP-RC. We then performed high-throughput exon sequencing in a worldwide cohort of 800 additional families affected by NPHP-RC. We identified two ADAMTS9 mutations (c.4575_4576del [p.Gln1525Hisfs∗60] and c.194C>G [p.Thr65Arg]) that appear to cause NPHP-RC. Although ADAMTS9 is known to be a secreted extracellular metalloproteinase, we found that ADAMTS9 localized near the basal bodies of primary cilia in the cytoplasm. Heterologously expressed wild-type ADAMTS9, in contrast to mutant proteins detected in individuals with NPHP-RC, localized to the vicinity of the basal body. Loss of ADAMTS9 resulted in shortened cilia and defective sonic hedgehog signaling. Knockout of Adamts9 in IMCD3 cells, followed by spheroid induction, resulted in defective lumen formation, which was rescued by an overexpression of wild-type, but not of mutant, ADAMTS9. Knockdown of adamts9 in zebrafish recapitulated NPHP-RC phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in ADAMTS9 cause NPHP-RC and that ADAMTS9 is required for the formation and function of primary cilia.
Assuntos
Proteína ADAMTS9/genética , Ciliopatias/genética , Mutação , Doenças Renais Policísticas/genética , Proteína ADAMTS9/metabolismo , Animais , Cílios/patologia , Ciliopatias/patologia , Feminino , Humanos , Masculino , Fenótipo , Doenças Renais Policísticas/patologia , Esferoides Celulares , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life, and in utero obstruction to urine flow is a frequent cause of secondary upper urinary tract malformations. Here, using whole-exome sequencing, we identified three different biallelic mutations in CHRNA3, which encodes the α3 subunit of the nicotinic acetylcholine receptor, in five affected individuals from three unrelated families with functional lower urinary tract obstruction and secondary CAKUT. Four individuals from two families have additional dysautonomic features, including impaired pupillary light reflexes. Functional studies in vitro demonstrated that the mutant nicotinic acetylcholine receptors were unable to generate current following stimulation with acetylcholine. Moreover, the truncating mutations p.Thr337Asnfs∗81 and p.Ser340∗ led to impaired plasma membrane localization of CHRNA3. Although the importance of acetylcholine signaling in normal bladder function has been recognized, we demonstrate for the first time that mutations in CHRNA3 can cause bladder dysfunction, urinary tract malformations, and dysautonomia. These data point to a pathophysiologic sequence by which monogenic mutations in genes that regulate bladder innervation may secondarily cause CAKUT.
Assuntos
Doenças do Sistema Nervoso Autônomo/etiologia , Rim/anormalidades , Mutação , Receptores Nicotínicos/genética , Sistema Urinário/anormalidades , Anormalidades Urogenitais/etiologia , Adulto , Doenças do Sistema Nervoso Autônomo/genética , Doenças do Sistema Nervoso Autônomo/patologia , Feminino , Seguimentos , Humanos , Rim/patologia , Masculino , Linhagem , Prognóstico , Sistema Urinário/patologia , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia , Adulto JovemRESUMO
PURPOSE: Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the leading cause of chronic kidney disease in children. In total, 174 monogenic causes of isolated or syndromic CAKUT are known. However, syndromic features may be overlooked when the initial clinical diagnosis of CAKUT is made. We hypothesized that the yield of a molecular genetic diagnosis by exome sequencing (ES) can be increased by applying reverse phenotyping, by re-examining the case for signs/symptoms of the suspected clinical syndrome that results from the genetic variant detected by ES. METHODS: We conducted ES in an international cohort of 731 unrelated families with CAKUT. We evaluated ES data for variants in 174 genes, in which variants are known to cause isolated or syndromic CAKUT. In cases in which ES suggested a previously unreported syndromic phenotype, we conducted reverse phenotyping. RESULTS: In 83 of 731 (11.4%) families, we detected a likely CAKUT-causing genetic variant consistent with an isolated or syndromic CAKUT phenotype. In 19 of these 83 families (22.9%), reverse phenotyping yielded syndromic clinical findings, thereby strengthening the genotype-phenotype correlation. CONCLUSION: We conclude that employing reverse phenotyping in the evaluation of syndromic CAKUT genes by ES provides an important tool to facilitate molecular genetic diagnostics in CAKUT.