Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 608(7921): 62-68, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922499

RESUMO

Additive manufacturing produces net-shaped components layer by layer for engineering applications1-7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

2.
Nat Mater ; 20(11): 1498-1505, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34697430

RESUMO

Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts. Compression tests and computational modelling show that this change in beam morphology dramatically slows down the decrease in stiffness with decreasing density. In situ pillar compression experiments further demonstrate large deformation recovery after 30-50% compression and high specific damping merit index. Our strutted tube-in-tube design opens up the space and realizes highly desirable high modulus-low density and high modulus-high damping material structures.


Assuntos
Carbono , Grafite , Simulação por Computador , Porosidade , Próteses e Implantes
3.
Nat Mater ; 17(1): 63-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29115290

RESUMO

Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

4.
Nat Commun ; 15(1): 867, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287015

RESUMO

Pitting corrosion in seawater is one of the most difficult forms of corrosion to identify and control. A workhorse material for marine applications, 316L stainless steel (316L SS) is known to balance resistance to pitting with good mechanical properties. The advent of additive manufacturing (AM), particularly laser powder bed fusion (LPBF), has prompted numerous microstructural and mechanical investigations of LPBF 316L SS; however, the origins of pitting corrosion on as-built surfaces is unknown, despite their utmost importance for certification of LPBF 316L SS prior to fielding. Here, we show that Mn-rich silicate slags are responsible for pitting of the as-built LPBF material in sodium chloride due to their introduction of deleterious defects such as cracks or surface oxide heterogeneities. In addition, we explain how slags are formed in the liquid metal and deposited at the as-built surfaces using high-fidelity melt pool simulations. Our work uncovers how LPBF changes surface oxides due to rapid solidification and high-temperature oxidation, leading to fundamentally different pitting corrosion mechanisms.

5.
Adv Sci (Weinh) ; 9(32): e2203555, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180389

RESUMO

Civilian fusion demands structural materials that can withstand the harsh environments imposed inside fusion plasma reactors. The structural materials often transmute under 14.1 MeV fast neutrons, producing helium (He), which embrittles the grain boundary (GB) network. Here, it is shown that neutron-friendly and mechanically strong nano-phases with atomic-scale free volume can have low He-embedding energy E emb ${\mathcal{E}}_{\mathrm{emb}}$ and >10 at.% He-absorbing capacity, and can be especially advantageous for soaking up He on top of resisting radiation damage and creep, provided they have thermodynamic compatibility with the matrix phase, satisfactory equilibrium wetting angle, as well as a high enough melting point. The preliminary experimental demonstration proves that E emb ${\mathcal{E}}_{\mathrm{emb}}$ is a good ab initio predictor of He shielding potency in nano-heterophase materials, and thus, E emb ${\mathcal{E}}_{\mathrm{emb}}$ is used as a key feature for computational screening. In this context, a list of viable compounds expected to be good He-absorbing nano-phases is presented, taking into account E emb ${\mathcal{E}}_{\mathrm{emb}}$ , the neutron absorption and activation cross-sections, the elastic moduli, melting temperature, the thermodynamic compatibility, and the equilbrium wetting angle of the nano-phases with the Fe matrix as an example.


Assuntos
Hélio , Proteção Radiológica , Nêutrons , Nêutrons Rápidos , Genômica
6.
Sci Adv ; 7(38): eabg9358, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524849

RESUMO

High thermal gradients and complex melt pool instabilities involved in powder bed fusion­based metal additive manufacturing using focused Gaussian-shaped beams often lead to high porosity, poor morphological quality, and degraded mechanical performance. We show here that Bessel beams offer unprecedented control over the spatiotemporal evolution of the melt pool in stainless steel (SS 316L) in comparison to Gaussian beams. Notably, the nondiffractive nature of Bessel beams enables greater tolerance for focal plane positioning during 3D printing. We also demonstrate that Bessel beams significantly reduce the propensity for keyhole formation across a broad scan parameter space. High-speed imaging of the melt pool evolution and solidification dynamics reveals a unique mechanism where Bessel beams stabilize the melt pool turbulence and increase the time for melt pool solidification, owing to reduced thermal gradients. Consequently, we observe a distinctively improved combination of high density, reduced surface roughness, and robust tensile properties in 3D-printed test structures.

7.
RSC Adv ; 10(68): 41946-41953, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516577

RESUMO

A simple and easy way is proposed for the fabrication of a highly attenuating composite material for underwater acoustics. The approach involves the introduction of porous polymer beads into a polyurethane matrix. The porous beads are prepared through an emulsion-templating approach, and two different processes are used. The first one uses microfluidics to synthesize beads of controlled diameter and porosity. The control over the bead size allows the selection of the frequency range where the material exhibits the highest acoustic attenuation. The second one uses a double emulsion approach and allows for the production of much larger quantities of beads. Both approaches yield materials exhibiting much higher acoustic absorption than the one obtained using the most commonly used micro-balloon inclusion. We present both the synthesis procedures and the structural and acoustic characterizations of the beads and the final acoustic materials.

8.
Nat Commun ; 10(1): 4338, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554787

RESUMO

Additively manufactured (AM) metallic materials commonly possess substantial microscale internal stresses that manifest as intergranular and intragranular residual stresses. However, the impact of these residual stresses on the mechanical behaviour of AM materials remains unexplored. Here we combine in situ synchrotron X-ray diffraction experiments and computational modelling to quantify the lattice strains in different families of grains with specific orientations and associated intergranular residual stresses in an AM 316L stainless steel under uniaxial tension. We measure pronounced tension-compression asymmetries in yield strength and work hardening for as-printed stainless steel, and show they are associated with back stresses originating from heterogeneous dislocation distributions and resultant intragranular residual stresses. We further report that heat treatment relieves microscale residual stresses, thereby reducing the tension-compression asymmetries and altering work-hardening behaviour. This work establishes the mechanistic connections between the microscale residual stresses and mechanical behaviour of AM stainless steel.

9.
Ultramicroscopy ; 175: 1-8, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28110178

RESUMO

To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×103/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA