RESUMO
Plant roots encounter numerous pathogenic microbes that often cause devastating diseases. One such pathogen, Plasmodiophora brassicae (Pb), causes clubroot disease and severe yield losses on cruciferous crops worldwide. Here, we report the isolation and characterization of WeiTsing (WTS), a broad-spectrum clubroot resistance gene from Arabidopsis. WTS is transcriptionally activated in the pericycle upon Pb infection to prevent pathogen colonization in the stele. Brassica napus carrying the WTS transgene displayed strong resistance to Pb. WTS encodes a small protein localized in the endoplasmic reticulum (ER), and its expression in plants induces immune responses. The cryoelectron microscopy (cryo-EM) structure of WTS revealed a previously unknown pentameric architecture with a central pore. Electrophysiology analyses demonstrated that WTS is a calcium-permeable cation-selective channel. Structure-guided mutagenesis indicated that channel activity is strictly required for triggering defenses. The findings uncover an ion channel analogous to resistosomes that triggers immune signaling in the pericycle.
Assuntos
Brassica napus , Plasmodioforídeos , Microscopia Crioeletrônica , Chumbo , Brassica napus/genética , Plasmodioforídeos/fisiologia , Canais Iônicos , Doenças das PlantasRESUMO
The Eastern Eurasian Steppe was home to historic empires of nomadic pastoralists, including the Xiongnu and the Mongols. However, little is known about the region's population history. Here, we reveal its dynamic genetic history by analyzing new genome-wide data for 214 ancient individuals spanning 6,000 years. We identify a pastoralist expansion into Mongolia ca. 3000 BCE, and by the Late Bronze Age, Mongolian populations were biogeographically structured into three distinct groups, all practicing dairy pastoralism regardless of ancestry. The Xiongnu emerged from the mixing of these populations and those from surrounding regions. By comparison, the Mongols exhibit much higher eastern Eurasian ancestry, resembling present-day Mongolic-speaking populations. Our results illuminate the complex interplay between genetic, sociopolitical, and cultural changes on the Eastern Steppe.
Assuntos
Genética Populacional , Pradaria , Arqueologia , Europa (Continente) , Feminino , Frequência do Gene/genética , Pool Gênico , Heterogeneidade Genética , Genoma Humano , Geografia , Haplótipos/genética , História Antiga , Humanos , Masculino , Mongólia , Análise de Componente Principal , Fatores de TempoRESUMO
Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.
Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X , COVID-19 , China , Estudos de Coortes , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Conjuntos de Dados como Assunto , Humanos , Pulmão/patologia , Modelos Biológicos , Pandemias , Projetos Piloto , Pneumonia Viral/patologia , Pneumonia Viral/terapia , Prognóstico , Radiologistas , Insuficiência Respiratória/diagnósticoRESUMO
From AD 567-568, at the onset of the Avar period, populations from the Eurasian Steppe settled in the Carpathian Basin for approximately 250 years1. Extensive sampling for archaeogenomics (424 individuals) and isotopes, combined with archaeological, anthropological and historical contextualization of four Avar-period cemeteries, allowed for a detailed description of the genomic structure of these communities and their kinship and social practices. We present a set of large pedigrees, reconstructed using ancient DNA, spanning nine generations and comprising around 300 individuals. We uncover a strict patrilineal kinship system, in which patrilocality and female exogamy were the norm and multiple reproductive partnering and levirate unions were common. The absence of consanguinity indicates that this society maintained a detailed memory of ancestry over generations. These kinship practices correspond with previous evidence from historical sources and anthropological research on Eurasian Steppe societies2. Network analyses of identity-by-descent DNA connections suggest that social cohesion between communities was maintained via female exogamy. Finally, despite the absence of major ancestry shifts, the level of resolution of our analyses allowed us to detect genetic discontinuity caused by the replacement of a community at one of the sites. This was paralleled with changes in the archaeological record and was probably a result of local political realignment.
Assuntos
Arqueologia , DNA Antigo , Características da Família , Pradaria , Linhagem , Adulto , Feminino , Humanos , Masculino , Arqueologia/métodos , Ásia/etnologia , Cemitérios/história , Consanguinidade , DNA Antigo/análise , Europa (Continente)/etnologia , Características da Família/etnologia , Características da Família/história , Genômica , História Medieval , Política , Adolescente , Adulto JovemRESUMO
Quantum many-body systems away from equilibrium host a rich variety of exotic phenomena that are forbidden by equilibrium thermodynamics. A prominent example is that of discrete time crystals1-8, in which time-translational symmetry is spontaneously broken in periodically driven systems. Pioneering experiments have observed signatures of time crystalline phases with trapped ions9,10, solid-state spin systems11-15, ultracold atoms16,17 and superconducting qubits18-20. Here we report the observation of a distinct type of non-equilibrium state of matter, Floquet symmetry-protected topological phases, which are implemented through digital quantum simulation with an array of programmable superconducting qubits. We observe robust long-lived temporal correlations and subharmonic temporal response for the edge spins over up to 40 driving cycles using a circuit of depth exceeding 240 and acting on 26 qubits. We demonstrate that the subharmonic response is independent of the initial state, and experimentally map out a phase boundary between the Floquet symmetry-protected topological and thermal phases. Our results establish a versatile digital simulation approach to exploring exotic non-equilibrium phases of matter with current noisy intermediate-scale quantum processors21.
RESUMO
Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.
Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Locos de Características Quantitativas/genética , Plantas Geneticamente Modificadas , Estudo de Associação Genômica AmplaRESUMO
The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.
Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , China , Produção Agrícola/história , Feminino , Haplótipos/genética , História Antiga , Humanos , Japão , Idioma/história , Masculino , Mongólia , Nepal , Oryza , Polimorfismo de Nucleotídeo Único/genética , Sibéria , TaiwanRESUMO
Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Poliadenilação , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Cinética , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genéticaRESUMO
Meta-analyses have concluded that positive emotions do not reduce appetitive risk behaviors (risky behaviors that fulfill appetitive or craving states, such as smoking and excessive alcohol use). We propose that this conclusion is premature. Drawing on the Appraisal Tendency Framework and related theories of emotion and decision-making, we hypothesized that gratitude (a positive emotion) can decrease cigarette smoking, a leading cause of premature death globally. A series of multimethod studies provided evidence supporting our hypothesis (collective N = 34,222). Using nationally representative US samples and an international sample drawn from 87 countries, Studies 1 and 2 revealed that gratitude was inversely associated with likelihood of smoking, even after accounting for numerous covariates. Other positive emotions (e.g., compassion) lacked such consistent associations, as expected. Study 3, and its replication, provided further support for emotion specificity: Experimental induction of gratitude, unlike compassion or sadness, reduced cigarette craving compared to a neutral state. Study 4, and its replication, showed that inducing gratitude causally increased smoking cessation behavior, as evidenced by enrollment in a web-based cessation intervention. Self-reported gratitude mediated the effects in both experimental studies. Finally, Study 5 found that current antismoking messaging campaigns by the US Centers for Disease Control and Prevention primarily evoked sadness and compassion, but seldom gratitude. Together, our studies advance understanding of positive emotion effects on appetitive risk behaviors; they also offer practical implications for the design of public health campaigns.
Assuntos
Emoções , Comportamentos Relacionados com a Saúde , Saúde Pública , Humanos , Emoções/fisiologia , Masculino , Feminino , Adulto , Promoção da Saúde/métodos , Abandono do Hábito de Fumar/psicologia , Pessoa de Meia-Idade , Fumar/psicologia , Estados UnidosRESUMO
Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.
RESUMO
Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Transdução de Sinais , Fosforilação , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Domínios Proteicos , MutaçãoRESUMO
The exosome functions in the degradation of diverse RNA species, yet how it is negatively regulated remains largely unknown. Here, we show that NRDE2 forms a 1:1 complex with MTR4, a nuclear exosome cofactor critical for exosome recruitment, via a conserved MTR4-interacting domain (MID). Unexpectedly, NRDE2 mainly localizes in nuclear speckles, where it inhibits MTR4 recruitment and RNA degradation, and thereby ensures efficient mRNA nuclear export. Structural and biochemical data revealed that NRDE2 interacts with MTR4's key residues, locks MTR4 in a closed conformation, and inhibits MTR4 interaction with the exosome as well as proteins important for MTR4 recruitment, such as the cap-binding complex (CBC) and ZFC3H1. Functionally, MID deletion results in the loss of self-renewal of mouse embryonic stem cells. Together, our data pinpoint NRDE2 as a nuclear exosome negative regulator that ensures mRNA stability and nuclear export.
Assuntos
Exossomos/genética , Exossomos/metabolismo , Proteínas Nucleares/fisiologia , RNA Helicases/metabolismo , Animais , Núcleo Celular/metabolismo , Células-Tronco Embrionárias , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Transporte Proteico/genética , Estabilidade de RNA/genéticaRESUMO
Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.
Assuntos
DNA Glicosilases , Guanina , RNA Viral , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Humanos , Guanina/análogos & derivados , Guanina/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Vírus Sincicial Respiratório Humano/metabolismo , Vírus Sincicial Respiratório Humano/genética , Replicação Viral/fisiologia , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismoRESUMO
Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.
Assuntos
Autofagia , Fagossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.
RESUMO
BACKGROUND: Cadonilimab is a bispecific antibody targeting PD-1 and CTLA-4, which has shown substantial clinical benefits in advanced cervical cancer. In the COMPASSION-16 trial, we aimed to evaluate the addition of cadonilimab to first-line standard chemotherapy in persistent, recurrent, or metastatic cervical cancer. METHODS: In this randomised, double-blind, multicentre, placebo-controlled phase 3 trial, women aged 18-75 years across 59 clinical sites in China with previously untreated persistent, recurrent, or metastatic cervical cancer were randomly assigned (1:1) to receive cadonilimab (10 mg/kg) or placebo plus platinum-based chemotherapy with or without bevacizumab every 3 weeks for six cycles, followed by maintenance therapy every 3 weeks for up to 2 years. Randomisation was performed centrally through an interactive web-response system. Stratification factors were the use of bevacizumab (yes or no) and previous concurrent chemoradiotherapy (yes or no). The dual primary outcomes were progression-free survival as assessed by blinded independent central review and overall survival in the full analysis set. This study is registered with ClinicalTrials.gov, NCT04982237; the study has completed enrolment and is ongoing for treatment and follow-up. FINDINGS: 445 eligible women were enrolled between Sept 11, 2021, and June 23, 2022. Median progression-free survival was 12·7 months (95% CI 11·6-16·1) in the cadonilimab group and 8·1 months (7·7-9·6) in the placebo group (hazard ratio 0·62 [95% CI 0·49-0·80], p<0·0001); median overall survival was not reached (27·0 months to not estimable) versus 22·8 months (17·6-29·0), respectively (hazard ratio 0·64 [0·48-0·86], p=0·0011). The most common grade 3 or higher adverse events were decreased neutrophil count, decreased white blood cell count, and anaemia. INTERPRETATION: The addition of cadonilimab to first-line standard chemotherapy significantly improved progression-free survival and overall survival with a manageable safety profile in participants with persistent, recurrent, or metastatic cervical cancer. The data support the use of cadonilimab plus chemotherapy as an efficacious first-line therapy in persistent, recurrent, or metastatic cervical cancer. FUNDING: Akeso Biopharma.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Bevacizumab , Recidiva Local de Neoplasia , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Pessoa de Meia-Idade , Bevacizumab/uso terapêutico , Bevacizumab/administração & dosagem , Método Duplo-Cego , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adulto , China , Recidiva Local de Neoplasia/tratamento farmacológico , Idoso , Adulto Jovem , Adolescente , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Intervalo Livre de ProgressãoRESUMO
BACKGROUND & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.
Assuntos
Hipertensão Portal , Camundongos Knockout , Pressão na Veia Porta , Veia Porta , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hipertensão Portal/metabolismo , Hipertensão Portal/genética , Hipertensão Portal/fisiopatologia , Hipertensão Portal/etiologia , Ligadura , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/fisiopatologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Piperazinas/farmacologia , Pressão na Veia Porta/efeitos dos fármacos , Veia Porta/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Serotonina/metabolismo , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transdução de Sinais , Tioacetamida/toxicidadeRESUMO
Duplex sequencing technology has been widely used in the detection of low-frequency mutations in circulating tumor deoxyribonucleic acid (DNA), but how to determine the sequencing depth and other experimental parameters to ensure the stable detection of low-frequency mutations is still an urgent problem to be solved. The mutation detection rules of duplex sequencing constrain not only the number of mutated templates but also the number of mutation-supportive reads corresponding to each forward and reverse strand of the mutated templates. To tackle this problem, we proposed a Depth Estimation model for stable detection of Low-Frequency MUTations in duplex sequencing (DELFMUT), which models the identity correspondence and quantitative relationships between templates and reads using the zero-truncated negative binomial distribution without considering the sequences composed of bases. The results of DELFMUT were verified by real duplex sequencing data. In the case of known mutation frequency and mutation detection rule, DELFMUT can recommend the combinations of DNA input and sequencing depth to guarantee the stable detection of mutations, and it has a great application value in guiding the experimental parameter setting of duplex sequencing technology.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Neoplasias/genética , Taxa de Mutação , DNARESUMO
Predicting therapeutic responses in cancer patients is a major challenge in the field of precision medicine due to high inter- and intra-tumor heterogeneity. Most drug response models need to be improved in terms of accuracy, and there is limited research to assess therapeutic responses of particular tumor types. Here, we developed a novel method DROEG (Drug Response based on Omics and Essential Genes) for prediction of drug response in tumor cell lines by integrating genomic, transcriptomic and methylomic data along with CRISPR essential genes, and revealed that the incorporation of tumor proliferation essential genes can improve drug sensitivity prediction. Concisely, DROEG integrates literature-based and statistics-based methods to select features and uses Support Vector Regression for model construction. We demonstrate that DROEG outperforms most state-of-the-art algorithms by both qualitative (prediction accuracy for drug-sensitive/resistant) and quantitative (Pearson correlation coefficient between the predicted and actual IC50) evaluation in Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopedia datasets. In addition, DROEG is further applied to the pan-gastrointestinal tumor with high prevalence and mortality as a case study at both cell line and clinical levels to evaluate the model efficacy and discover potential prognostic biomarkers in Cisplatin and Epirubicin treatment. Interestingly, the CRISPR essential gene information is found to be the most important contributor to enhance the accuracy of the DROEG model. To our knowledge, this is the first study to integrate essential genes with multi-omics data to improve cancer drug response prediction and provide insights into personalized precision treatment.