Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 124(12): 7976-8008, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38801719

RESUMO

Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.


Assuntos
RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência/química , Animais , Terapia Genética/métodos , Doenças Genéticas Inatas/terapia , Doenças Genéticas Inatas/genética
2.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36164730

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-tRNA Sintetases/genética , Mutação , RNA de Transferência/genética , Suplementos Nutricionais
3.
IUBMB Life ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352000

RESUMO

Heterozygous pathogenic variants in the histidyl-tRNA synthetase (HARS) gene are associated with Charcot-Marie-Tooth (CMT) type 2W disease, classified as an axonal peripheral neuropathy. To date, at least 60 variants causing CMT symptoms have been identified in seven different aminoacyl-tRNA synthetases, with eight being found in the catalytic domain of HARS. The genetic data clearly show a causative role of aminoacyl-tRNA synthetases in CMT; however, the cellular mechanisms leading to pathology can vary widely and are unknown in the case of most identified variants. Here we describe a novel HARS variant, c.412T>C; p.Y138H, identified through a CMT gene panel in a patient with peripheral neuropathy. To determine the effect of p.Y138H we employed a humanized HARS yeast model and recombinant protein biochemistry, which identified a deficiency in protein dimerization and a growth defect which shows mild but significant improvement with histidine supplementation. This raises the potential for a clinical trial of histidine.

4.
Genes (Basel) ; 14(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833180

RESUMO

Histidyl-tRNA synthetase (HARS) ligates histidine to its cognate transfer RNA (tRNAHis). Mutations in HARS cause the human genetic disorders Usher syndrome type 3B (USH3B) and Charcot-Marie-Tooth syndrome type 2W (CMT2W). Treatment for these diseases remains symptomatic, and no disease specific treatments are currently available. Mutations in HARS can lead to destabilization of the enzyme, reduced aminoacylation, and decreased histidine incorporation into the proteome. Other mutations lead to a toxic gain-of-function and mistranslation of non-cognate amino acids in response to histidine codons, which can be rescued by histidine supplementation in vitro. We discuss recent advances in characterizing HARS mutations and potential applications of amino acid and tRNA therapy for future gene and allele specific therapy.


Assuntos
Doença de Charcot-Marie-Tooth , Histidina , Humanos , Histidina/genética , Histidina/metabolismo , Mutação , Histidina-tRNA Ligase/genética , Doença de Charcot-Marie-Tooth/genética , Aminoacilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA