Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.249
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029966

RESUMO

Cystargolides are natural products originally isolated from Kitasatospora cystarginea NRRL B16505 as inhibitors of the proteasome. They are composed of a dipeptide backbone linked to a ß-lactone warhead. Recently, we identified the cystargolide biosynthetic gene cluster, but systematic genetic analyses had not been carried out because of the lack of a heterologous expression system. Here, we report the discovery of a homologous cystargolide biosynthetic pathway in Streptomyces durhamensis NRRL-B3309 by genome mining. The gene cluster was cloned via transformation-associated recombination and heterologously expressed in Streptomyces coelicolor M512. We demonstrate that it contains all genes necessary for the production of cystargolide A and B. Single gene deletion experiments reveal that only five of the eight genes from the initially proposed gene cluster are essential for cystargolide synthesis. Additional insights into the cystargolide pathway could be obtained from in vitro assays with CysG and chemical complementation of the respective gene knockout. This could be further supported by the in vitro investigation of the CysG homolog BelI from the belactosin biosynthetic gene cluster. Thereby, we confirm that CysG and BelI catalyze a cryptic SAM-dependent transfer of a methyl group that is critical for the construction of the cystargolide and belactosin ß-lactone warheads.


Assuntos
Dipeptídeos , Metiltransferases , Streptomycetaceae , Vias Biossintéticas , Dipeptídeos/metabolismo , Lactonas/metabolismo , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Streptomyces coelicolor/genética , Streptomycetaceae/enzimologia , Streptomycetaceae/genética
2.
Proc Natl Acad Sci U S A ; 119(25): e2201242119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696568

RESUMO

Quorum sensing is described as a widespread cell density-dependent signaling mechanism in bacteria. Groups of cells coordinate gene expression by secreting and responding to diffusible signal molecules. Theory, however, predicts that individual cells may short-circuit this mechanism by directly responding to the signals they produce irrespective of cell density. In this study, we characterize this self-sensing effect in the acyl-homoserine lactone quorum sensing system of Pseudomonas aeruginosa. We show that antiactivators, a set of proteins known to affect signal sensitivity, function to prevent self-sensing. Measuring quorum-sensing gene expression in individual cells at very low densities, we find that successive deletion of antiactivator genes qteE and qslA produces a bimodal response pattern, in which increasing proportions of constitutively induced cells coexist with uninduced cells. Comparing responses of signal-proficient and -deficient cells in cocultures, we find that signal-proficient cells show a much higher response in the antiactivator mutant background but not in the wild-type background. Our results experimentally demonstrate the antiactivator-dependent transition from group- to self-sensing in the quorum-sensing circuitry of P. aeruginosa. Taken together, these findings extend our understanding of the functional capacity of quorum sensing. They highlight the functional significance of antiactivators in the maintenance of group-level signaling and experimentally prove long-standing theoretical predictions.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Percepção de Quorum , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Transdução de Sinais
3.
J Bacteriol ; 206(2): e0043023, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38240569

RESUMO

Quorum sensing (QS) is an elaborate regulatory mechanism associated with virulence and bacterial adaptation to the changing environment. QS is widespread in Proteobacteria and acts primarily through N-acylhomoserine lactone (AHL) signals. At the core of the AHL-driven QS systems are the AHL synthase gene (luxI family) and its cognate transcriptional regulator gene (luxR family). Several QS systems display one or more genes intervening between the luxI and luxR, in which gene arrangements are notably different due to the relative position and the transcriptional orientation between the essential luxI/R and the genes of location correlation. These adjacent genes may exert a regulatory impact on the primary QS genes or contribute toward an extension of QS regulatory control. In this review, we describe the organization of AHL-driven QS genes based on previous research and specific genome databases and provide new insights into these atypical QS gene arrangements.


Assuntos
Proteínas Repressoras , Transativadores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Lactonas , Percepção de Quorum/genética , Regulação Bacteriana da Expressão Gênica , Acil-Butirolactonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Fungal Genet Biol ; 174: 103912, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004163

RESUMO

The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.

5.
Chembiochem ; 25(6): e202300722, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38235523

RESUMO

We report the first biocatalytic modification of sesquiterpene lactones (STLs) found in the chicory plants, specifically lactucin (Lc), 11ß,13-dihydrolactucin (DHLc), lactucopicrin (Lp), and 11ß,13-dihydrolactucopicrin (DHLp). The selective O-acylation of their primary alcohol group was carried out by the lipase B from Candida antarctica (CAL-B) using various aliphatic vinyl esters as acyl donors. Perillyl alcohol, a simpler monoterpenoid, served as a model to set up the desired O-acetylation reaction by comparing the use of acetic acid and vinyl acetate as acyl donors. Similar conditions were then applied to DHLc, where five novel ester chains were selectively introduced onto the primary alcohol group, with conversions going from >99 % (acetate and propionate) to 69 % (octanoate). The synthesis of the corresponding O-acetyl esters of Lc, Lp, and DHLp was also successfully achieved with near-quantitative conversion. Molecular docking simulations were then performed to elucidate the preferred enzyme-substrate binding modes in the acylation reactions with STLs, as well as to understand their interactions with crucial amino acid residues at the active site. Our methodology enables the selective O-acylation of the primary alcohol group in four different STLs, offering possibilities for synthesizing novel derivatives with significant potential applications in pharmaceuticals or as biocontrol agents.


Assuntos
Cichorium intybus , Sesquiterpenos , Ésteres/química , Simulação de Acoplamento Molecular , Acilação , Lactonas
6.
Appl Environ Microbiol ; 90(3): e0181823, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38332488

RESUMO

Zearalenone (ZEN) and its derivatives are estrogenic mycotoxins known to pose significant health threats to humans and animals. Especially, the derivative α-zearalanol (α-ZAL) is over 10 times more toxic than ZEN. Simultaneous degradation of ZEN and its derivatives, especially α-ZAL, using ZEN lactone hydrolases (ZHDs) is a promising solution to eliminate their potential hazards to food safety. However, most available ZHDs exhibit limited activity toward the more toxic α-ZAL compared to ZEN. Here, we identified a broad-substrate spectrum ZHD, named ZHDAY3, from Exophiala aquamarina CBS 119918, which could not only efficiently degrade ZEN but also exhibited 73% relative activity toward α-ZAL. Through rational design, we obtained the ZHDAY3(N153H) mutant, which exhibited the highest specific activity (253.3 ± 4.3 U/mg) reported so far for degrading α-ZAL. Molecular docking, structural comparative analysis, and kinetic analysis collectively suggested that the shorter distance between the side chain of the catalytic residue His242 and the lactone bond of α-ZAL and the increased binding affinity to the substrate were mainly responsible for the improved catalytic activity of ZHDAY3(N153H) mutant. This mechanism was further validated through additional molecular docking of 18 mutants and experimental verification of six mutants.IMPORTANCEThe mycotoxins zearalenone (ZEN) and its derivatives pose a significant threat to food safety. Here, we present a highly promising ZEN lactone hydrolase (ZHD), ZHDAY3, which is capable of efficiently degrading both ZEN and the more toxic derivative α-ZAL. Next, the ZHDAY3(N153H) mutant obtained by single-point mutation exhibited the highest specific activity for degrading α-ZAL reported thus far. We further elucidated the molecular mechanisms underlying the enhanced hydrolytic activity of ZHDAY3(N153H) toward α-ZAL. These findings represent the first investigation on the molecular mechanism of ZHDs against α-ZAL and are expected to provide a significant reference for further rational engineering of ZHDs, which will ultimately contribute to addressing the health risks and food safety issues posed by ZEN-like mycotoxins.


Assuntos
Micotoxinas , Zearalenona , Zeranol , Humanos , Animais , Zearalenona/química , Zearalenona/metabolismo , Zeranol/química , Zeranol/metabolismo , Lactonas , Mutação Puntual , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Cinética , Micotoxinas/metabolismo
7.
Appl Environ Microbiol ; 90(3): e0225623, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38415624

RESUMO

The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from ß-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Acil-Butirolactonas , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ácidos Graxos/metabolismo , Bactérias/metabolismo , Escherichia coli/metabolismo , Acetilcoenzima A/metabolismo
8.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Gleiquênias , Lactonas , Simbiose , Animais , Lactonas/metabolismo , Gleiquênias/fisiologia , Gleiquênias/microbiologia , Gleiquênias/efeitos dos fármacos , Dípteros/fisiologia , Glicosilação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Nostoc/fisiologia , Nostoc/genética , Nostoc/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
9.
J Exp Bot ; 75(9): 2754-2771, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224521

RESUMO

l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.


Assuntos
Ácido Ascórbico , Frutas , Myrtaceae , Proteínas de Plantas , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossíntese , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Myrtaceae/metabolismo , Myrtaceae/genética , Galactose Desidrogenases/metabolismo , Galactose Desidrogenases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
10.
Mol Biol Rep ; 51(1): 856, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066893

RESUMO

BACKGROUND: Breast cancer is the most common cancer in the world. Cynaropicrin is a natural sesquiterpene lactone with potential anticancer effects. The present study was conducted to evaluate the effect of cynaropicrin on proliferation and apoptosis in breast cancer cells. METHODS: MDA-MB-231 and MCF-7 cell lines were treated with increasing concentrations of cynaropicrin. The viability of both cell lines was measured using MTT assay. Flowcytometry was used to detect apoptotic cells. The expression levels of apoptosis-related genes were determined using quantitative polymerase chain reaction. The protein expression of apoptosis markers was determined by western blotting. RESULTS: Cynaropicrin significantly diminished the proliferation of MDA-MB-231 and MCF-7 cell lines in a dose-dependent manner. Flowcytometry data uncovered that cynaropicrin augmented early and late apoptosis in MDA-MB-231 cells. Real time-PCR and western blotting results also confirmed the upregulation of pro-apoptotic Bax, caspase-3, -8, and 9 as well as downregulated level of anti-apoptotic marker Bcl-2. Cynaropicrin also remarkably increased the activity of caspase-3, -8, and 9 in MDA-MB-231 cells. However, cynaropicrin neither promoted apoptosis in MCF-7 cells nor altered the expression levels and activity of above mentioned apoptotic markers. CONCLUSION: The present data indicated anti-proliferative properties of cynaropicrin against breast cancer and highlighted apoptosis-inducing effects of this sesquiterpene on triple negative breast cancer (TNBC) cells. These data may suggest cynaropicrin as a potential anti-TNBC agent to tackle therapy resistance in this type of breast cancer.


Assuntos
Apoptose , Proliferação de Células , Lactonas , Sesquiterpenos , Neoplasias de Mama Triplo Negativas , Humanos , Lactonas/farmacologia , Apoptose/efeitos dos fármacos , Sesquiterpenos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Células MCF-7 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
11.
Macromol Rapid Commun ; 45(15): e2400163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38690806

RESUMO

Synthesis of monomer-recyclable polyesters solely from CO2 and bulk olefins holds great potential in significantly reducing CO2 emissions and addressing the issue of plastic pollution. Due to the kinetic disadvantage of direct copolymerization of CO2 and bulk olefins compared to homopolymerization of bulk olefins, considerable research attention has been devoted to synthesis of polyester via the ring-opening polymerization (ROP) of a six-membered disubstituted lactone intermediate, 1,2-ethylidene-6-vinyl-tetrahydro-2H-pyran-2-one (𝜹-L), obtained from telomerization of CO2 and 1,3-butadiene. However, the conjugate olefin on the six-membered ring of 𝜹-L leads to serious Michael addition side reactions. Thus, the selective ROP of 𝜹-L, which can precisely control the repeating unit for the production of polyesters potentially amenable to efficient monomer recycling, remains an unresolved challenge. Herein, the first example of selective ROP of 𝜹-L is reported using a combination of organobase and N,N'-Bis[3,5-bis(trifluoromethyl)phenyl]urea as the catalytic system. Systematic modifications of the substituent of the urea show that the presence of electron-deficient 3,5-bis(trifluoromethyl)-phenyl groups is the key to the extraordinary selectivity of ring opening over Michael addition. Efficient monomer recovery of oligo(𝜹-L) is also achieved under mild catalytic conditions.


Assuntos
Butadienos , Dióxido de Carbono , Poliésteres , Polimerização , Butadienos/química , Poliésteres/química , Poliésteres/síntese química , Dióxido de Carbono/química , Estrutura Molecular , Catálise
12.
Parasitology ; 151(3): 271-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163962

RESUMO

Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the ß-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.


Assuntos
Ancylostoma , Anti-Helmínticos , Humanos , Cães , Animais , Ancylostoma/genética , Ancylostomatoidea , Larva/genética , Anti-Helmínticos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistência a Medicamentos/genética
13.
J Biochem Mol Toxicol ; 38(1): e23601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069819

RESUMO

Dysregulation of osteoblastic differentiation is an important risk factor of osteoporosis, the therapy of which is challenging. Dehydrocostus lactone (DHC), a sesquiterpene isolated from medicinal plants, has displayed anti-inflammatory and antitumor properties. In this study, we investigated the effects of DHC on osteoblastic differentiation and mineralization of MC3T3-E1 cells. Interestingly, we found that DHC increased the expression of marker genes of osteoblastic differentiation, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). Additionally, DHC increased the expressions of collagen type I alpha 1 (Col1a1) and collagen type I alpha 2 (Col1a2). We also demonstrate that DHC increased ALP activity. Importantly, the Alizarin Red S staining assay revealed that DHC enhanced osteoblastic differentiation of MC3T3-E1 cells. Mechanistically, it is shown that DHC increased the expression of Runx-2, a central regulator of osteoblastic differentiation. Treatment with DHC also increased the levels of phosphorylated p38, and its blockage using its specific inhibitor SB203580 abolished the effects of DHC on runt-related transcription factor 2 (Runx-2) expression and osteoblastic differentiation, suggesting the involvement of p38. Based on these findings, we concluded that DHC might possess a capacity for the treatment of osteoporosis by promoting osteoblastic differentiation.


Assuntos
Colágeno Tipo I , Lactonas , Osteoporose , Sesquiterpenos , Humanos , Colágeno Tipo I/metabolismo , Transdução de Sinais , Diferenciação Celular , Fosfatase Alcalina/metabolismo , Osteogênese
14.
Bioorg Chem ; 144: 107109, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219480

RESUMO

Herein, (-)-galiellalactone 1 congeners responsible for the nuclear factor erythroid 2-related factor 2 (Nrf2)-activating neuroprotective effects were elucidated. Additionally, novel congener-based Nrf2 activators were identified using a drug repositioning strategy. (-)-Galiellalactone, which comprises a tricyclic lactone skeleton, significantly activates antioxidant response element (ARE)-mediated transcription in neuroblastoma SH-SY5Y cells. Interestingly, two cyclohexene-truncated [3.3] bicyclic lactone analogs, which possess an exocyclic α-methylene-γ-butyrolactone moiety, exhibited higher Nrf2/ARE transcriptional activities than the parent (-)-galiellalactone. We confirmed that the cyclohexene moiety embedding the [3.3] bicyclic lactone congener does not play the essential role of (-)-galiellalactone for Nrf2/ARE activation. Nrf2/ARE activation by novel analogs resulted in the upregulation of downstream antioxidative and phase II detoxifying enzymes, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, which are closely related to the cytoprotective effects on neurodegenerative diseases. (-)-Galiellalactone and its [3.3] bicyclic variants 3l and 3p increased the expression of antioxidant genes and exhibited neuroprotective effects against 6-hydroxydopamine-mediated neurotoxicity in the neuroblastoma SH-SY5Y cell line.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Neuroblastoma/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Lactonas/farmacologia , Lactonas/química , Cicloexenos/farmacologia , Estresse Oxidativo , Linhagem Celular Tumoral
15.
Environ Res ; 252(Pt 2): 118835, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582423

RESUMO

Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.


Assuntos
Cádmio , Chumbo , Percepção de Quorum , Esgotos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Cádmio/análise , Percepção de Quorum/efeitos dos fármacos , Chumbo/análise , Esgotos/microbiologia , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Águas Residuárias/química , Águas Residuárias/microbiologia , Reatores Biológicos/microbiologia , Acil-Butirolactonas/metabolismo , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos
16.
J Sep Sci ; 47(11): e2400181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863110

RESUMO

Topotecan (TPT) is used in the treatment of retinoblastoma, the most common malignant intraocular tumor in children. TPT undergoes pH-dependent hydrolysis of the lactone ring to the ring-opened carboxylate form, with the lactone form showing antitumor activity. A selective, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of both forms of TPT in one mobile phase composition in plasma and vitreous humor matrices. The method showed an excellent linear range of 0.375-120 ng/mL for the lactone. For the carboxylate, the linear range was from 0.75 to 120 ng/mL. The matrix effect and the recovery for the lactone ranged from 98.5% to 106.0% in both matrices, for the carboxylate form, it ranged from 94.9% to 101.2%. The dynamics of the transition between TPT lactone and TPT carboxylate were evaluated at different pH environments. The stability of TPT forms was assessed in plasma and vitreous humor at 8 and 37°C and a very fast conversion of lactone to carboxylate form occurred at 37°C in both matrices. The method developed facilitates the investigation of TPT pharmacodynamics and the release kinetics in the development of the innovative local drug delivery systems.


Assuntos
Lactonas , Espectrometria de Massas em Tandem , Topotecan , Corpo Vítreo , Cromatografia Líquida de Alta Pressão , Lactonas/química , Lactonas/análise , Corpo Vítreo/química , Topotecan/química , Topotecan/análise , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análise , Estrutura Molecular
17.
Biosci Biotechnol Biochem ; 88(3): 260-269, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38111271

RESUMO

Medium-sized lactones are an important class of natural products with diverse biological activities. Unlike conventional organic compounds, these molecules exhibit elevated levels of conformational flexibility. This inherent structural feature occasionally exacerbates the complexities associated with determining their conformation, thereby posing challenges in deciphering their stereochemistry or, in certain instances, leading to incorrect structures. This review highlights specific scenarios in which synthetic studies and computational chemistry have assumed pivotal roles in unveiling the structures of lactones, which have previously eluded definitive elucidation.


Assuntos
Produtos Biológicos , Lactonas , Lactonas/química , Conformação Molecular , Produtos Biológicos/química
18.
Biofouling ; 40(1): 14-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38254292

RESUMO

Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.


Assuntos
Percepção de Quorum , Salmonella enteritidis , Percepção de Quorum/genética , Salmonella enteritidis/genética , Biofilmes , Anaerobiose , 4-Butirolactona/farmacologia , 4-Butirolactona/metabolismo , Acil-Butirolactonas
19.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187885

RESUMO

The carbapenem family of ß-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which ß-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular ß-lactams. Decades of study have delineated mechanisms of ß-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.


Assuntos
Antibacterianos/farmacologia , Meropeném/farmacologia , Peptidil Transferases/metabolismo , Antibacterianos/química , Lactonas/química , Lactonas/farmacologia , Meropeném/química , Testes de Sensibilidade Microbiana
20.
Biomed Chromatogr ; 38(1): e5766, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920134

RESUMO

During bioanalytical assay development and validation, maintaining the stability of the parent drug and metabolites of interest is critical. While stability of the parent drug has been thoroughly investigated, the stability of unanalyzed metabolites is often overlooked. When an unstable metabolite is known or suspected to interfere with measurement of the parent drug or other metabolites of interest through back-conversion or other routes, additional tests with these unstable metabolites should be conducted. Here, the development and validation of two assays for quantification of rosuvastatin, one in human plasma and one in human urine, was reported. To this end, additional sets of quality control samples were added during assay validation to ensure the reliability of the assays. Acid treatment of samples is shown to be necessary for rosuvastatin quantification. In this regard, stability issues caused by the metabolite, rosuvastatin lactone, may have been overlooked if assay development and validation had only considered the parent drug, rosuvastatin. These assays represent a case study for how to develop and validate assays with unstable metabolites. Taken together, unstable metabolites should be included in all applicable stability tests.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Humanos , Rosuvastatina Cálcica , Cromatografia Líquida , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA