Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009790

RESUMO

Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl2].4H2O (1), [In(lap)2Cl(Et3N)] (2), [In(lap)3]·2H2O (3) [In(lap)(bipy)Cl2] bipy = 2,2'-bipyridine (4) and [In(lap)(phen)Cl2] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2'-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.

2.
Bioorg Chem ; 151: 107617, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053100

RESUMO

Psoriasis is a troublesome scaling skin disease with no high-effective medication available by far. Signal transducer and activator of transcription 3 (STAT3) has recently been revealed as a crucial player in the pathogenesis and progression of psoriasis and emerged as an intriguing antipsoriatic drug target. Naturally occurring lapachol and its quinone analogs had been discovered as effective STAT3 inhibitors, however, their antipsoriatic effects are not well investigated. Previously, we have reported a series of isothiazoloquinone lapachol derivatives. Here, the antipsoriastic potentials of these isothiazoloquinones were investigated and, in addition, 35 novel isoxazoloquinone derivatives were prepared and studied for their anti-psoriasis properties. Among them, the most potent antipsoriatic compound B20 determined by in vitro test on HaCaT cells could directly bind to STAT3, reduce STAT3 level and inhibit STAT3 nuclear translocation. In vivo studies showed that topical application of B20 could effectively alleviate IMQ-induced psoriasis in mice with no obvious side effects. In addition, B20 inhibited the production of interleukin 17 (IL-17A), a STAT3-downstream cytokine essential for the progression of psoriasis, both in vitro and in vivo. Thus, isoxazoloquinone B20 is a potent STAT3-targeting antipsoriatic agent worth of further investigation.

3.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615502

RESUMO

Oral squamous cell carcinoma (OSCC) is a worldwide public health problem, accounting for approximately 90% of all oral cancers, and is the eighth most common cancer in men. Cisplatin and carboplatin are the main chemotherapy drugs used in the clinic. However, in addition to their serious side effects, such as damage to the nervous system and kidneys, there is also drug resistance. Thus, the development of new drugs becomes of great importance. Naphthoquinones have been described with antitumor activity. Some of them are found in nature, but semi synthesis has been used as strategy to find new chemical entities for the treatment of cancer. In the present study, we promote a multiple component reaction (MCR) among lawsone, arylaldehydes, and benzylamine to produce sixteen chemoselectively derivated Mannich adducts of 1,4-naphthoquinones in good yield (up to 97%). The antitumor activities and molecular mechanisms of action of these compounds were investigated in OSCC models and the compound 6a induced cytotoxicity in three different tumor cell lines (OSCC4, OSCC9, and OSCC25) and was more selective (IS > 2) for tumor cells than the chemotropic drug carboplatin and the controls lapachol and shikonin, which are chemically similar compounds with cytotoxic effects. The 6a selectively and significantly reduced the amount of cell colony growth, was not hemolytic, and tolerable in mice with no serious side effects at a concentration of 100 mg/kg with a LD50 of 150 mg/kg. The new compound is biologically stable with a profile similar to carboplatin. Morphologically, 6a does not induce cell retraction or membrane blebs, but it does induce intense vesicle formation and late emergence of membrane bubbles. Exploring the mechanism of cell death induction, compound 6a does not induce ROS formation, and cell viability was not affected by inhibitors of apoptosis (ZVAD) and necroptosis (necrostatin 1). Autophagy followed by a late apoptosis process appears to be the death-inducing pathway of 6a, as observed by increased viability by the autophagy inhibitor (3-MA) and by the appearance of autophagosomes, later triggering a process of late apoptosis with the presence of caspase 3/7 and DNA fragmentation. Molecular modeling suggests the ability of the compound to bind to topoisomerase I and II and with greater affinity to hPKM2 enzyme than controls, which could explain the mechanism of cell death by autophagy. Finally, the in-silico prediction of drug-relevant properties showed that compound 6a has a good pharmacokinetic profile when compared to carboplatin and doxorubicin. Among the sixteen naphthoquinones tested, compound 6a was the most effective and is highly selective and well tolerated in animals. The induction of cell death in OSCC through autophagy followed by late apoptosis possibly via inhibition of the PKM2 enzyme points to a promising potential of 6a as a new preclinical anticancer candidate.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Naftoquinonas , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Bucais/metabolismo , Carboplatina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Autofagia , Naftoquinonas/química
4.
J Bioenerg Biomembr ; 53(2): 149-156, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33635515

RESUMO

The present study aimed to evaluate the in vitro efflux pump inhibitory capacity of hydroxyamines derived from lapachol and norlachol, where compounds 3, 4, and 5 were tested against the S. aureus strains: RN4220 carrying the pUL5054 plasmid; and IS-58, endowed with the PT181 plasmid. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial action of the substances was quantified by determining the Minimum Inhibitory Concentration (MIC), while a microdilution assay was carried out to ascertain efflux pump inhibition of Staphylococcus aureus strains carrying the MsrA macrolide and the TetK tetracycline efflux pumps with the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis by an ANOVA test and Bonferroni post hoc test. The MIC from the substances exhibited a value ≥ 1024 µg/mL. However, a significant reduction (p < 0.0001) of the erythromycin, tetracycline and ethidium bromide MIC was demonstrated when these were in combination with the substances, with this effect being due to a supposed efflux pump inhibition. The tested substances demonstrated effectiveness at decreasing the MIC of erythromycin, tetracycline and ethidium bromide, potentially by inhibiting the MsrA macrolide and the TetK tetracycline efflux pumps present in the tested S. aureus strains.


Assuntos
Antibacterianos/uso terapêutico , Naftoquinonas/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Naftoquinonas/farmacologia
5.
Microb Pathog ; 144: 104181, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32277994

RESUMO

The aim of this research was to investigate the pharmacological properties of 2-(2-hydroxyethylamine)-3-(3-methyl-2-butenyl)-1,4-dihydro-1,4-naphthalenedione, 2-(2-hydroxy-ethylamine)-3-(2-methyl-propenyl)-[1,4]naphthoquinone and 2-(3-hydroxy-propylamine)-3-(3-methyl-2-butenyl)-[1,4]naphthoquinone using computational prediction models, in addition to evaluating the in vitro antibacterial and modulatory activity of these compounds against bacterial ATCC strains and clinical isolates. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, these then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial activity and modulatory activity of the substances were assayed by broth microdilution method to determine the Minimum Inhibitory Concentration (MIC). The molecular structures were analyzed using the ChEMBL database to predict possible pharmacological targets, which pointed to the molecule 2- (2-hydroxy-ethylamine)-3-(2-methyl-propenyl)-[1,4]naphthoquinone as a probable antibacterial agent for the proteins Replicative DNA helicase and RecA. The compounds had a low molecular weight and a small number of rotatable bonds. The MICs of the substances were not clinically significant, however, the association with gentamicin and amikacin reduced the MICs of these antibiotics. In conclusion, the combination of these substances with aminoglycosides may be a therapeutic alternative to bacterial resistance and the reduction of side effects.


Assuntos
Antibacterianos/farmacologia , Naftoquinonas/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Simulação por Computador , DNA Helicases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Naftoquinonas/química , Recombinases Rec A/metabolismo
6.
Toxicol Appl Pharmacol ; 401: 115074, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32464218

RESUMO

The natural naphthoquinones lapachol, α- and ß-lapachone are found in Bignoniaceous Brazilian plant species of the Tabebuia genus (synonym Handroanthus) and are recognized for diverse bioactivities, including as antimalarial. The aim of the present work was to perform in silico, in vitro and in vivo studies to evaluating the antimalarial potential of these three naphthoquinones in comparison with atovaquone, a synthetic antimalarial. The ADMET properties of these compounds were predicted in silico by the preADMET program. The in vitro toxicity assays were experimentally determined in immortalized and tumoral cells from different organs. In vivo acute oral toxicity was also evaluated for lapachol. Several favorable pharmacokinetics data were predicted although, as expected, high cytotoxicity was experimentally determined for ß-lapachone. Lapachol was not cytotoxic or showed low cytotoxicity to all of the cells assayed (HepG2, A549, Neuro 2A, LLC-PK1, MRC-5), it was nontoxic in the acute oral test and disclosed the best parasite selectivity index in the in vitro assays against chloroquine resistant Plasmodium falciparum W2 strain. On the other hand, α- and ß-lapachone were more potent than lapachol in the antiplasmodial assays but with low parasite selectivity due to their cytotoxicity. The diversity of data here reported disclosed lapachol as a promising candidate to antimalarial drug development.


Assuntos
Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Simulação por Computador , Sistemas de Liberação de Medicamentos/métodos , Naftoquinonas/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Células A549 , Animais , Células CACO-2 , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células Hep G2 , Humanos , Células LLC-PK1 , Células Madin Darby de Rim Canino , Camundongos , Naftoquinonas/isolamento & purificação , Plasmodium falciparum/fisiologia , Suínos
7.
Bioorg Chem ; 101: 103984, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554278

RESUMO

The oral squamous cell carcinoma (OSCC) stands out as a public health problem due to its high incidence and low survival rate, despite advances in diagnosis and treatment. Moreover, the most commonly chemotherapeutic agents for OSCC, such as carboplatin and cisplatin, generate important side effects, evidencing the urgency in developing new drugs. Naphthoquinones are an important class of natural products or synthetic compounds with cytotoxic effect demonstrated on different cancer types. In the present study, thirty-five 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles were synthesized and the antitumor activity and molecular mechanisms were evaluated in several assays including in vitro and in vivo models of OSCC and normal oral human cells. Compounds 16a, 16b and 16 g were able to induce cytotoxicity in three different tumor cell lines of human OSCC (SCC4, SCC9 and SCC25) and were more toxic and selective to tumor cells (Selective Index, SI > 2) than classical and chemically similar controls (Carboplatin and Lapachol). Compound 16 g showed the higher SI value. Besides, compounds 16a, 16b and 16 g significantly reduced colony formation of SCC9 cells in the tested concentrations. Hemolytic assay using compounds 16a, 16b and 16 g at high concentrations showed no compound exhibited hemolysis higher than 5%, similar to controls. In vivo acute toxicity study showed that 16 g was the only one, among the three compounds, with no apparent limiting toxic effects on mice in the tested concentrations. Thus, the investigation of cell death mechanisms was conducted with this compound. 16 g does not trigger ROS production nor binds to DNA. On the other hand, compound 16 g induced microtubule disorganization, and molecular modeling studies suggests a potential mechanism of action related to inhibition of topoisomerases and/or hPKM2 activities. Cell morphology, pyknotic nuclei presence, cleaved caspase-3 staining and viability assays using caspase-3 inhibitors demonstrate compound 16 g induced cell death through apoptosis. Among the 35 synthesized triazole naphthoquinones, compound 16 g was the most effective compound against OSCC cells, presenting high cytotoxicity (~35 µM), selectivity (SI ~ 6) and low acute toxicity on animals, and therefore might be considered for future cancer therapy.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Naftoquinonas/uso terapêutico , Triazóis/uso terapêutico , Animais , Humanos , Camundongos , Estrutura Molecular , Naftoquinonas/química , Triazóis/química
8.
Bioorg Chem ; 103: 104122, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745754

RESUMO

A new library of twenty triazole-lapachol and nor-lapachol derivatives was synthesized. The compounds were evaluated against the epimastigotes form of Trypanosoma cruzi and promastigotes of Leishmania braziliensis and L. infantum. The cytotoxicity of the compounds was determined on murine fibroblasts and used to assess the selectivity index. The introduction of triazole rings in the naphthoquinone derivatives improved activity against the parasitic protozoa T. cruzi and Leishmania species. Some of the derivatives were three to six times more potent than benznidazole against T. cruzi, with similar or slightly better selectivity indexes. The results against L. braziliensis showed that the derivatives 5b and 5e were the most selective compounds. However, they were less selective than the reference compound, miltefosine. Among all products, the derivative 3a was the most selective compound against L. infantum. Nevertheless, it was less potent and less selective than miltefosine. Also, the minimum inhibitory concentration values of the derivatives against nine different bacteria were determined. Moderate antibacterial activity was observed for compound 5c against Staphylococcus aureus.


Assuntos
Antibacterianos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Naftoquinonas/farmacologia , Triazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Relação Dose-Resposta a Droga , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftoquinonas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Triazóis/química
9.
Med Mycol ; 57(3): 332-339, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945180

RESUMO

Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin American countries. Amphotericin B, sulfonamides, and azoles may be used in the treatment of PCM. However, the high toxicity, prolonged course of treatment, and significant frequency of disease relapse compromise their use. Therefore, there is a need to seek new therapeutic options. We conducted tests with thiosemicarbazone of lapachol (TSC-lap) to determine the antifungal activity and phenotypic effects against several isolates of Paracoccidioides spp. In addition, we evaluated the toxicity against murine macrophages and the ability to enhance phagocytosis. Further, we verified that TSC-lap was active against yeasts but did not show any interaction with the drugs tested. The TSC-lap showed no toxicity at the concentration of 40 µg/ml in macrophages, and at 15.6 µg/ml it could increase the phagocytic index. We observed that this compound induced in vitro ultrastructural changes manifested as withered and broken cells beyond a disorganized cytoplasm with accumulation of granules. We did not observe indications of activity in the cell wall, although membrane damages were noted. We observed alterations in the membrane permeability, culminating in a significant increase in K+ efflux and a gradual loss of the cellular content with increase in the concentration of TSC-lap. In addition, we showed a significant reduction of ergosterol amount in the Pb18 membrane. These data reinforce the possible mechanism of action of this compound to be closely associated with ergosterol biosynthesis and reaffirms the antifungal potential of TSC-lap against Paracoccidioides spp.


Assuntos
Antifúngicos/farmacologia , Membrana Celular/efeitos dos fármacos , Naftoquinonas/farmacologia , Paracoccidioides/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Animais , Ergosterol/biossíntese , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Paracoccidioidomicose/tratamento farmacológico , Paracoccidioidomicose/microbiologia , Fagocitose/efeitos dos fármacos
10.
Exp Parasitol ; 199: 67-73, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797783

RESUMO

Leishmaniasis is one of the most important neglected diseases worldwide. It is a life-threatening disease and causes significant morbidity, long-term disability, and early death. Treatment involves disease control or use of intervention measures, although the currently used drugs require long-lasting therapy, and display toxicity and reduced efficacy. The use of natural products isolated from plants, such as lapachol, an abundant naphthoquinone naturally occurring in South American Handroanthus species (Tabebuia, Bignoniaceae), is a promising option for the treatment of leishmaniasis. In this study, we investigated the leishmanicidal activity of lapachol in vitro and in vivo against Leishmania infantum and L. amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Low cytotoxicity in HepG2 cells (3405.8 ±â€¯261.33 µM), good anti-Leishmania activity, and favorable selectivity indexes (SI) against promastigotes of both L. amazonensis (IC50 = 79.84 ±â€¯9.10 µM, SI = 42.65) and L. infantum (IC50 = 135.79 ±â€¯33.04 µM, SI = 25.08) were observed. Furthermore, anti-Leishmania activity assays performed on intracellular amastigotes showed good activity for lapachol (IC50 = 191.95 µM for L. amazonensis and 171.26 µM for L. infantum). Flow cytometric analysis demonstrated that the cytotoxic effect of lapachol in Leishmania promastigotes was caused by apoptosis-like death. Interestingly, the in vitro leishmanicidal effect of lapachol was confirmed in vivo in murine models of visceral and cutaneous leishmaniasis, as lapachol (25 mg/kg oral route for 24 h over 10 days) was able to significantly reduce the parasitic load in skin lesions, liver, and spleen, similar to amphotericin B, the reference drug. These results reinforce the therapeutic potential of lapachol, which warrants further investigations as an anti-leishmaniasis therapeutic.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Naftoquinonas/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Hep G2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/farmacologia , Naftoquinonas/toxicidade , Carga Parasitária , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Células RAW 264.7/efeitos dos fármacos , Células RAW 264.7/parasitologia , Distribuição Aleatória , Pele/parasitologia , Baço/parasitologia , Tabebuia/química
11.
Phytother Res ; 33(9): 2337-2346, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31225674

RESUMO

Lapachol is a 1,4-naphthoquinone that is isolated from the Bignoniaceae family. It has been reported to exert anti-inflammatory, antibacterial, and anticancer activities. However, the anticancer activity of lapachol and its molecular mechanisms against esophageal squamous cell carcinoma (ESCC) cells have not been fully investigated. Herein, we report that lapachol is a novel ribosomal protein S6 kinase 2 (RSK2) inhibitor that suppresses growth and induces intrinsic apoptosis in ESCC cells. We found that lapachol strongly attenuates downstream signaling molecules of RSK2 in ESCC cells and also directly inhibits RSK2 activity in vitro. The RSK protein is highly activated in ESCC cells and knockdown of RSK2 significantly suppresses anchorage-dependent and anchorage-independent growth of ESCC cells. Additionally, lapachol inhibits anchorage-dependent and anchorage-independent growth of ESCC cells, and the inhibition of cell growth by lapachol is dependent on the expression of RSK2. We also found that lapachol induces mitochondria-mediated cellular apoptosis by activating caspases-3, -7, and PARP, inducing the expression of cytochrome c and BAX by inhibiting downstream molecules of RSK2. Overall, lapachol is a potent RSK2 inhibitor that might be used for chemotherapy against ESCC.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Naftoquinonas/uso terapêutico , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Naftoquinonas/farmacologia , Transdução de Sinais
12.
Prep Biochem Biotechnol ; 49(5): 459-463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30896339

RESUMO

Lapachol is a natural naphthoquinone with a range of biological effects, including anticancer activity. Microbial transformations of lapachol can lead to the formation of new biologically active compounds. In addition, fungi can produce secondary metabolites that are also important for drug discovery. The goal of this study was to evaluate the ability of filamentous fungi to biotransform lapachol into biologically active compounds and identify secondary metabolites produced in the presence of lapachol. Seven out of nine strains of filamentous fungi tested exhibited the ability to biotransform or biodegrade lapachol. The bioactive derivatives norlapachol and isolapachol were identified among biotransformation products. Moreover, lapachol stimulated the production of pyrrolo-[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) and phenol-2,4-bis-(1,1-dimethylethyl), secondary metabolites already known to have antimicrobial and antioxidant activities. These results open the perspective of using these strains of filamentous fungi for lapachol biotransformation and efficient production of several biologically active compounds.


Assuntos
Fungos/metabolismo , Naftoquinonas/metabolismo , Biotransformação , Cromatografia Gasosa-Espectrometria de Massas , Naftoquinonas/análise , Naftoquinonas/síntese química
13.
Molecules ; 23(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301214

RESUMO

In continuation of our quest for new redox-modulating catalytic antitumor molecules, selenium-containing quinone-based 1,2,3-triazoles were synthesized using rhodium-catalyzed C-H bond activation and click reactions. All compounds were evaluated against five types of cancer cell lines: HL-60 (human promyelocytic leukemia cells), HCT-116 (human colon carcinoma cells), SF295 (human glioblastoma cells), NCIH-460 (human lung cells) and PC3 (human prostate cancer cells). Some compounds showed good activity with IC50 values below 1 µM. The cytotoxic potential of the naphthoquinoidal derivatives was also evaluated in non-tumor cells, exemplified by L929 cells. Overall, these compounds represent promising new lead derivatives and stand for a new class of chalcogenium-containing derivatives with potential antitumor activity.


Assuntos
Antineoplásicos/síntese química , Compostos Organosselênicos/síntese química , Quinonas/química , Ródio/química , Triazóis/síntese química , Antineoplásicos/uso terapêutico , Catálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Click , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Organosselênicos/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
14.
Bioorg Med Chem ; 24(22): 5781-5786, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27667553

RESUMO

A series of novel lapachol derivatives possessing indole scaffolds was designed and synthesized. The in vitro anti-proliferative activity of these novel compounds was evaluated in Eca109 and Hela cell lines. Almost all the tested compounds showed manifested potent inhibitory activity against the two tested cancer cell lines. Topo I-mediated DNA relaxation activity indicated that these novel compounds have potent Topoisomerase I inhibition activity. The most potent compounds 4n and 4k demonstrated more cytotoxicity than camptothecin and was comparable to camptothecin in inhibitory activities on Topoisomerase I in our biological assay. In addition, the Hoechst 33342 staining method also showed that the complex can induce Hela cell apoptosis.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Desenho de Fármacos , Naftoquinonas/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
15.
Molecules ; 21(7)2016 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-27384551

RESUMO

Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-ß-lapachone (NßL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 µm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NßL on PLGA. Finally, the cytotoxic activity of NßL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.


Assuntos
Benzofuranos/administração & dosagem , Cápsulas , Preparações de Ação Retardada , Portadores de Fármacos , Ácido Láctico , Naftoquinonas/administração & dosagem , Ácido Poliglicólico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzofuranos/química , Cápsulas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Concentração Inibidora 50 , Ácido Láctico/química , Masculino , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Naftoquinonas/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Neoplasias da Próstata , Análise Espectral Raman
16.
Biochim Biophys Acta ; 1827(10): 1141-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23711795

RESUMO

The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh.


Assuntos
Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Lisina/metabolismo , Succinato Desidrogenase/metabolismo , Enxofre/química , Sítios de Ligação , Catálise , Dinitrocresóis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Lisina/química , Lisina/genética , Mutagênese Sítio-Dirigida , Oxirredução , Succinato Desidrogenase/química , Succinato Desidrogenase/genética
17.
Bioorg Med Chem Lett ; 24(2): 454-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374273

RESUMO

A series of 17 selected natural and semisynthetic 1,4-naphthoquinones were synthesized, and their growth inhibitory activity was evaluated in vitro. The compounds were tested on six human cancer cell lines using the MTT colorimetric assay. The data revealed that of the chemicals under study only lapachol, its acetate and 3-geranyllawsone displayed the highest activity, recording mean IC50 values ranging from 15 to 22 µM.


Assuntos
Antineoplásicos Fitogênicos/química , Inibidores do Crescimento/química , Naftoquinonas/química , Extratos Vegetais/química , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Colorimetria/métodos , Inibidores do Crescimento/uso terapêutico , Humanos , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Extratos Vegetais/uso terapêutico
18.
Bioorg Med Chem ; 22(5): 1608-19, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24530030

RESUMO

1,2,3-Triazole-, arylamino- and thio-substituted naphthoquinones (24, 8, and 2 representatives, respectively) were synthesized in moderate yields and evaluated against several human cancer cell lines (blood, ovarian, breast, central nervous system, colon, and prostate cancers and melanoma), showing, for some of them, IC50 values below 2 µM. The cytotoxic potential of the tested naphthoquinones was also assayed on non-tumor cells such as human peripheral blood mononucluear cells (PBMC) and two murine fibroblast lines (L929 and V79 cells). α-Lapachone- and nor-α-lapachone-based 1,2,3-triazoles and arylamino-substituted naphthoquinones showed potent cytotoxicity against different cancer cell lines. The compounds may represent promising new lead derivatives for anticancer drug development. The electrochemical properties of selected compounds were evaluated in an attempt to correlate them with antitumor activity.


Assuntos
Naftoquinonas/química , Triazóis/química , Proliferação de Células , Química Click , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
19.
Ann Occup Hyg ; 58(5): 566-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671613

RESUMO

A novel high-performance liquid chromatographic/ultraviolet method was developed to detect lapachol (LP) and deoxylapachol (DLP) in wood dust as chemical markers of teak wood (a suspected human carcinogen). The specificity of this analysis was determined by noting the absence of LP and DLP in 12 other specimens of different woods belonging to the angiosperm family. The consistency was examined by analyzing teak from three different sources, where the percentages (wt/wt) of the chemicals ranged from 0.006 to 0.261 for LP and from 0.038 to 0.497 for DLP, respectively. Although the LP and DLP components of teak varied according to source, a very high correlation coefficient (r (2) > 0.98 always) was found between the content of the two markers in the bulk specimens and in bulk dust derived from them. The method was then applied to teak dust collected on polyvinylchloride filters from aerosol in an exposure chamber in the range of mass loadings between 0.03 and 3.65 mg, which corresponds to a dust exposure between 0.124 and 8.703 mg m(-3) for a sampling time of 2h. A field test was also carried out in a small factory where teak was used. A good correlation was confirmed between LP and DLP versus the dust collected on the filter in both cases. LP and DLP can be markers to estimate the true quantities of teak dust inhaled in a workplace with mixed wood dust, provided the results are matched to the content of LP and DLP in the bulk wood. LP and DLP have also been proposed as the agents responsible for allergic reaction to teak dust. Therefore, it would be useful to evaluate the exposure to these two substances even without a relationship to teak dust exposure.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Naftoquinonas/análise , Exposição Ocupacional/análise , Madeira/química , Cromatografia Líquida de Alta Pressão/métodos , Humanos
20.
Lett Appl Microbiol ; 59(1): 108-14, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24635204

RESUMO

UNLABELLED: Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9ß-hexahydroindeno[1,2-ß]pyran-9ß-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 µmol l(-1) ) than lapachol (IC50 = 72.3 µmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 µmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. SIGNIFICANCE AND IMPACT OF THE STUDY: Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess the effects of bacterial metabolism on drug performance and toxicity.


Assuntos
Antineoplásicos/farmacologia , Bifidobacterium/metabolismo , Indenos/farmacologia , Lactobacillus acidophilus/metabolismo , Naftoquinonas/metabolismo , Probióticos/metabolismo , Biotransformação , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Naftoquinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA