Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 208, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519933

RESUMO

BACKGROUND: Mango (Mangifera indica L.) faces escalating challenges from increasing drought stress due to erratic climate patterns, threatening yields, and quality. Understanding mango's drought response mechanisms is pivotal for resilience and food security. RESULTS: Our RNA-seq analyses unveil 12,752 differentially expressed genes linked to stress signaling, hormone regulation, and osmotic adjustment. Weighted Gene Co-expression Network Analysis identified three essential genes-WRKY transcription factor 3, polyamine oxidase 4, and protein MEI2-like 1-as drought defense components. WRKY3 having a role in stress signaling and defense validates its importance. Polyamine oxidase 4, vital in stress adaptation, enhances drought defense. Protein MEI2-like 1's significance emerges, hinting at novel roles in stress responses. Metabolite profiling illuminated Mango's metabolic responses to drought stress by presenting 990 differentially abundant metabolites, mainly related to amino acids, phenolic acids, and flavonoids, contributing to a deeper understanding of adaptation strategies. The integration between genes and metabolites provided valuable insights by revealing the correlation of WRKY3, polyamine oxidase 4 and MEI2-like 1 with amino acids, D-sphingnosine and 2,5-Dimethyl pyrazine. CONCLUSIONS: This study provides insights into mango's adaptive tactics, guiding future research for fortified crop resilience and sustainable agriculture. Harnessing key genes and metabolites holds promise for innovative strategies enhancing drought tolerance in mango cultivation, contributing to global food security efforts.


Assuntos
Mangifera , Resiliência Psicológica , Secas , Mangifera/genética , Perfilação da Expressão Gênica , Aminoácidos , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
J Autoimmun ; 144: 103181, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38522129

RESUMO

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Mangifera , Adulto , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Mucosa Intestinal , Modelos Animais de Doenças
3.
J Sci Food Agric ; 104(10): 5907-5920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416598

RESUMO

BACKGROUND: Mangifera indica L. (mango), a medicinal plant rich in biologically active compounds, has potential to be used in disease-preventing and health-promoting products. The present investigation reveals and uncovers bioactive metabolites with remarkable therapeutic efficiency from mango (family: Anacardiaceae) seeds. RESULTS: Biological activity was determined by antimicrobial, antioxidant and anticancer assays, and metabolite profiling was performed on gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) platforms. Validation of active metabolites was carried out by in silico molecular docking (Molinspiration Cheminformatics Server and PASS). Extracted and identified metabolites were screened; 54 compounds associated with various groups were selected for the in silico interaction study. CONCLUSIONS: Molecular docking revealed lead molecules with a potential binding energy score, efficacy and stable modulation with a selected protein domain. Investigation, directed by in vitro and in silico analysis, confirms mango seeds as an excellent source of potential metabolites as a therapeutic agent. © 2024 Society of Chemical Industry.


Assuntos
Descoberta de Drogas , Mangifera , Metabolômica , Simulação de Acoplamento Molecular , Extratos Vegetais , Sementes , Mangifera/química , Sementes/química , Sementes/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/metabolismo
4.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543353

RESUMO

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Assuntos
Antimaláricos , Antineoplásicos , Antagonistas do Ácido Fólico , Xantonas , Humanos , Antimaláricos/farmacologia , Glicina Hidroximetiltransferase , Simulação de Acoplamento Molecular , Xantonas/farmacologia , Antineoplásicos/farmacologia , Serina/química
5.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569360

RESUMO

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Assuntos
Mangifera , Mangifera/genética , Protoplastos/metabolismo , Folhas de Planta/genética , Transfecção
6.
Mol Biol Rep ; 49(5): 3491-3501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35076854

RESUMO

BACKGROUND: In this study, the genetic diversity of local mango (Mangifera indica L.) germplasm including 14 genotypes were evaluated by using morphological, biochemical markers and DNA barcoding technique. Morphological characterization is the first step towards utilizing these germplasm in crop improvement studies. The advanced chloroplast based DNA barcode method can be utilized to assess the genetic diversity and phylogenetic structure in such populations. METHODS: The study was carried out during 2018-2019 years to evaluate local mango germplasm including 14 diverse genotypes based on a number of morphological and biochemical traits and chloroplast DNA barcoding as well. The experiment was laid out in one way ANOVA design with fourteen germplasm indicated with indigenous collection number. RESULTS: Among local mango germplasm, IC 589756 was found to be the most promising with respect to high magnitudes of fruit length, fruit width, fruit weight, pulp weight, soluble solid content (SSC)/Acidity ratio, pH and low acidity followed by IC 589746 exhibiting the highest pulp percentage and SSC accompanied with lowest stone weight and stone percent as compared to the other genotypes. Further, the dendrogram and cluster analyses based on sequencing of chloroplast marker i.e., trnH- psbA and trnCD depicted the relationship among mango genotypes and clearly clustered them into two main clusters at a similarity coefficient 0.035 and 0.150, respectively. The first cluster includes only one genotype and cluster-II contains 13 genotypes. CONCLUSIONS: Particularly results revealed that DNA barcoding of local mango germplasm can assist not only in molecular identification but also help in elucidation of their phylogenetic relationship and thus important in maintaining biodiversity inventories.


Assuntos
Mangifera , Cloroplastos/genética , DNA de Cloroplastos , Frutas/genética , Variação Genética , Mangifera/genética , Filogenia
7.
Biosci Biotechnol Biochem ; 86(5): 665-671, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35234829

RESUMO

Mango (Mangifera indica L.) kernels are usually discarded as waste, but they contain many pharmacological properties and bioactivities. In this study, we isolated antiobesity agents from mango kernels that inhibit intracellular lipid formation in 3T3-L1 adipocytes. Two phenolic acids, ethyl gallate and ethyl digallate, and 2 tannin acids, 1,2,3,4,6-penta-O-galloyl-ß-d-glucose (PGG) and 3-O-digalloyl-1,2,4,6-tetra-O-ß-d-glucose (HGG), were identified from mango kernels and were found to be suppressed lipid accumulation as evidenced by Oil Red O staining. Furthermore, ethyl digallate, PGG, and HGG significantly downregulated the mRNA expression of adipogenic transcription factors such as C/EBPα and PPARγ. However, ethyl gallate did not affect the expression of these transcription factors. Our findings reveal the presence of antiobesity compounds in mango kernels, implying its therapeutic role against obesity.


Assuntos
Mangifera , Células 3T3-L1 , Adipogenia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Camundongos , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Taninos/metabolismo , Taninos/farmacologia
8.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409334

RESUMO

LEAFY (LFY) plays an important role in the flowering process of plants, controlling flowering time and mediating floral meristem differentiation. Owing to its considerable importance, the mango LFY gene (MiLFY; GenBank accession no. HQ585988) was isolated, and its expression pattern and function were characterized in the present study. The cDNA sequence of MiLFY was 1152 bp, and it encoded a 383 amino acid protein. MiLFY was expressed in all tested tissues and was highly expressed in flowers and buds. Temporal expression analysis showed that MiLFY expression was correlated with floral development stage, and two relative expression peaks were detected in the early stages of floral transition and floral organ differentiation. Moreover, 35S::GFP-MiLFY fusion protein was shown to be localized to the nucleus of cells. Overexpression of MiLFY in Arabidopsis promoted early flowering and the conversion of lateral meristems into terminal flowers. In addition, transgenic plants exhibited obvious morphological changes, such as differences in cauline leaf shape, and the number of lateral branches. When driven by the MiLFY promoter, GFP was highly expressed in leaves, floral organs, stems, and roots, during the flowering period. Exogenous gibberellin (GA3) treatment downregulated MiLFY promoter expression, but paclobutrazol (PPP333) upregulated it. Bimolecular fluorescence complementation (BiFC) assays showed that the MiLFY protein can interact with zinc-finger protein 4 (ZFP4) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (MiSOC1D). Taken together, these results indicate that MiLFY plays a pivotal role in controlling mango flowering, and that it is regulated by gibberellin and paclobutrazol.


Assuntos
Arabidopsis , Mangifera , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Mangifera/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
9.
J Sci Food Agric ; 102(13): 6112-6122, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35474219

RESUMO

BACKGROUND: Treatment with low temperatures can be used to quarantine mangoes against fruit-fly infestation. However, mangoes can develop chilling injury (CI) when stored at temperatures below 13 °C. We demonstrated that the immersion in polyol solutions can alleviate CI symptoms in 'Palmer' mangoes stored at 8 °C. These suggest that polyols can be used to reduce CI in mangoes during quarantine at low temperatures. Thus, we investigated the efficacy of applying 0.1% (v/v) glycerol, propylene glycol, or sorbitol to 'Palmer' mangoes subjected to cold treatment (1.0 °C) for 28 days. Mangoes were then ripened at 23 °C for 7 days. RESULTS: Among these polyols, sorbitol was the most effective in alleviating CI for up to 14 days of cold treatment. Mangoes treated with sorbitol showed lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2 O2 ), and reduced polyphenol oxidase (PPO) activity. These fruit also had elevated levels of ascorbate (AsA), especially in the epicarp, and increased superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activity. CONCLUSION: Sorbitol can reduce the CI, but to an unsatisfying level, and it should be combined with other treatments storage at low temperature. © 2022 Society of Chemical Industry.


Assuntos
Mangifera , Antioxidantes/farmacologia , Temperatura Baixa , Frutas , Quarentena , Sorbitol
10.
BMC Plant Biol ; 21(1): 407, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493220

RESUMO

BACKGROUND: TERMINAL FLOWER 1 (TFL1) belongs to the phosphatidylethanolamine-binding protein (PEBP) family, which is involved in inflorescence meristem development and represses flowering in several plant species. In the present study, four TFL1 genes were cloned from the mango (Mangifera indica L.) variety 'SiJiMi' and named MiTFL1-1, MiTFL1-2, MiTFL1-3 and MiTFL1-4. RESULTS: Sequence analysis showed that the encoded MiTFL1 proteins contained a conserved PEBP domain and belonged to the TFL1 group. Expression analysis showed that the MiTFL1 genes were expressed in not only vegetative organs but also reproductive organs and that the expression levels were related to floral development. Overexpression of the four MiTFL1 genes delayed flowering in transgenic Arabidopsis. Additionally, MiTFL1-1 and MiTFL1-3 changed the flower morphology in some transgenic plants. Yeast two-hybrid (Y2H) analysis showed that several stress-related proteins interacted with MiTFL1 proteins. CONCLUSIONS: The four MiTFL1 genes exhibited a similar expression pattern, and overexpression in Arabidopsis resulted in delayed flowering. Additionally, MiTFL1-1 and MiTFL1-3 overexpression affected floral organ development. Furthermore, the MiTFL1 proteins could interact with bHLH and 14-3-3 proteins. These results indicate that the MiTFL1 genes may play an important role in the flowering process in mango.


Assuntos
Arabidopsis/fisiologia , Flores/fisiologia , Mangifera/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Proteína de Ligação a Fosfatidiletanolamina/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Técnicas do Sistema de Duplo-Híbrido
11.
Molecules ; 26(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920056

RESUMO

Colombian mango production, which exceeded 261,000 t in 2020, generates about 40% of the whole fruit as solid waste, of which more than 50% are seed kernels (over 52,000 t solid by-product); though none is currently used for commercial purposes. This study reports the results of the supercritical carbon dioxide (scCO2) extraction of an oil rich in essential fatty acids (EFAs) from revalorized mango seed kernels and the optimization of the process by the Response Surface Methodology (RSM). In pilot-scale scCO2 experiments, pressure (23-37 MPa) and temperature (52-73 °C) were varied, using 4.5 kg of CO2. The highest experimental oil extraction yield was 83 g/kg (37 MPa and 63 °C); while RSM predicted that 84 g/kg would be extracted at 35 MPa and 65 °C. Moreover, by fine-tuning pressure and temperature it was possible to obtain an EFA-rich lipid fraction in linoleic (37 g/kg) and α-linolenic (4 g/kg) acids, along with a high oleic acid content (155 g/kg), by using a relatively low extraction pressure (23 MPa), which makes the process a promising approach for the extraction of oil from mango waste on an industrial scale, based on a circular economy model.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico , Mangifera/química , Sementes/química , Ácidos Graxos/análise , Projetos Piloto , Óleos de Plantas/isolamento & purificação , Pressão , Temperatura
12.
J Sci Food Agric ; 101(13): 5671-5677, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33782975

RESUMO

BACKGROUND: Under-Skin Browning (USB) is a physiological skin disorder that significantly reduces quality of 'Honey Gold' mango (HG) fruit. Relationships between potential causative factors (vibration, holding temperature, sap) and expression factors (enzymes activities, phenolic concentration, anatomy) were investigated. RESULTS: USB incidence was 2.6-3.6-fold higher in ripe HG fruit vibrated for 3-18 h at 12 °C to simulate transport damage and held then at 12 °C for 8 days compared to control fruit held under the same conditions. USB severity of fruit lightly abraded with sand paper to simulate physical damage and artificially induce USB was higher in fruit held at 10 °C than at 6-8 °C or 12-13 °C for 6-8 days. Compared to non-affected skin, USB-affected tissue had a 7.4% increase in total phenolics concentration. However, polyphenol oxidase (PPO) and peroxidase (POD) activities decreased by 19%. Anatomical similarities were observed between USB symptoms and sapburn caused by spurt sap or terpinolene (a major sap component) to abraded skin areas. Incidence of sapburn was higher in abraded fruit held at 12 °C than at 20 °C. CONCLUSION: Holding HG mango fruit at 10 °C can intensify USB. Activities of PPO and POD appear not to be regulatory factors in USB expression in HG. Sap components may be involved in USB expression under conducive postharvest conditions. © 2021 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Frutas/química , Mangifera/química , Catecol Oxidase/metabolismo , Frutas/enzimologia , Frutas/metabolismo , Mangifera/enzimologia , Mangifera/metabolismo , Peroxidase/metabolismo , Fenóis/análise , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Controle de Qualidade , Temperatura
13.
J Sci Food Agric ; 101(3): 1161-1166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32785943

RESUMO

BACKGROUND: Tree-ripe mangoes are of a better quality than the more commonly marketed mature-green fruit. However, the postharvest life of tree-ripe mangoes at the chilling threshold temperature for mature-green fruit of 12 °C is insufficient to allow long distance transport for international marketing. Because the chilling sensitivity often decreases as fruit ripen, lower temperatures (5 and 8 °C) in combination with a controlled atmosphere of 5 kPa O2 plus 10 or 25 kPa CO2 were tested to determine whether the quality of tree-ripe mangoes could be maintained longer without chilling injury (CI). RESULTS: Tree-ripe 'Tommy Atkins' and 'Keitt' mangoes were stored for 14 or 21 days, respectively, in air or controlled atmosphere (CA) at 5 or 8 °C. Respiration rates were below 10 mL kg-1 h-1 during CA storage and increased three-fold during a 3-day shelf life period at 20 °C. Ethanol synthesis of fruit stored in 25 kPa CO2 , but not 10 kPa CO2 , increased during storage and remained high during shelf life, indicating physiological stress. Elevated electrolyte leakage and 1-aminocyclopropane-1-carboxylic acid concentrations in both cultivars stored in 25 kPa CO2 also indicated that mesocarp tissues were injured by the higher CO2 level. No CI symptoms were observed in air or CA at either 5 or 8 °C. CONCLUSION: Storage of tree-ripe mangoes in 5 kPa O2 plus 10 kPa CO2 at either 5 or 8 °C best maintained the quality of Tommy Atkins and Keitt fruit for 14 or 21 days, respectively, without evidence of either atmosphere injury or CI. © 2020 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/análise , Armazenamento de Alimentos/métodos , Mangifera/química , Armazenamento de Alimentos/instrumentação , Frutas/química , Controle de Qualidade , Temperatura
14.
J Environ Manage ; 231: 1176-1181, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602242

RESUMO

Degradation of areas reduces nutrient cycling in the environment, and mango tree (Mangifera indica L.) cultivated in orchard could act as an alternative for degrading areas rehabilitation. The aim of this study was to evaluate the nutrients contribution to soil via litter in mango orchard, which was used as an alternative for degrading areas rehabilitation in the northeast of Pará, Brazil. The study was performed in the forest, mango orchard, and degrading area located in Salinópolis, Pará, Brazil. The total production and fractions (leaves, branches, reproductive parts, and miscellaneous), as well as the nutrient production and their contribution to the soil and litter decomposition were monitored. Mango trees have produced litter in similar quantities in the forest, 7.06 and 8.95 Mg ha-1 yr-1, respectively. However, mango orchard has denoted litter production seasonality, which was concentrated in less rainy season. Leaves fraction has presented larger contribution to litter total production. Moreover, the contribution of nutrients coming from mango orchard to the soil via litter was like forest. The decomposition was more rapid in mango orchard during the rainy season, when it took 5.51 months to decompose 50% of litter. Mango orchard may be used as an alternative to the rehabilitation of degrading areas due to its contribution to nutrient cycling and soil protection.


Assuntos
Mangifera , Brasil , Florestas , Nutrientes , Folhas de Planta , Solo , Árvores
15.
J Sci Food Agric ; 99(3): 1126-1134, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30047146

RESUMO

BACKGROUND: Mango fruit harvested at green mature stage were treated with methyl jasmonate (MeJA), nitric oxide (NO), or salicylic acid (SA) to investigate their effects on phytochemical concentrations in ripe fruit. RESULTS: Fruit fumigated with MeJA showed the highest increase in the concentrations of gallic acid (33.0%), caffeic acid (80.0%), total phenols (38.4%), and total antioxidant capacity (20.9%) in the peel, and total carotenoids (48.7%) in the pulp, compared to control. The fruit dipped in SA showed the highest increase in the concentrations of lupeol (59.8%) and ferulic acid (73.2%) in the pulp and ferulic acid (67.4%) in the peel. Fruit fumigated with NO or MeJA showed the highest concentrations of lupeol in the peel (94.3%, 119.4%), and gallic acid (37.9%, 61.0%), total phenols (62.7%, 31.0%), and ascorbic acid (17.7%, 18.8%) in the pulp respectively. All the elicitor treatments were significantly effective in increasing concentrations of mangiferin and chlorogenic acid in the pulp and peel, vanillic acid in the peel, and total antioxidant capacity in the pulp. CONCLUSION: Overall, MeJA (10-5 to 10-4 mol L-1 ) was identified as the most effective elicitor for triggering phytochemical production during ripening of harvested mango fruit. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/análise , Frutas/efeitos dos fármacos , Mangifera/efeitos dos fármacos , Compostos Fitoquímicos/metabolismo , Acetatos/farmacologia , Ciclopentanos/farmacologia , Manipulação de Alimentos/métodos , Frutas/química , Mangifera/química , Óxido Nítrico/farmacologia , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia
16.
J Sci Food Agric ; 99(8): 3740-3751, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30723909

RESUMO

There is a demand for feasible methodologies that can increase/maintain the levels of health-promoting phytochemicals in horticultural produce, due to strong evidence that these compounds can reduce risk of chronic diseases. Mango (Mangifera indica L.), ranks fifth among the most cultivated fruit crops in the world, is naturally rich in phytochemicals such as lupeol, mangiferin and phenolic acids (e.g. gallic acid, chlorogenic acid and vanillic acid). Yet, there is still much scope for up-regulating the levels of these compounds in mango fruit through manipulation of different preharvest and postharvest practices that affect their biosynthesis and degradation. The process of ripening, harvest maturity, physical and chemical elicitor treatments such as low temperature stress, methyl jasmonate (MeJA), salicylic acid (SA) and nitric oxide (NO) and the availability of enzyme cofactors (Mg2+ , Mn2+ and Fe2+ ) required in terpenoid biosynthesis were identified as potential determinants of the concentration of health-promoting compounds in mango fruit. The effectiveness of these preharvest and postharvest approaches in regulating the levels of lupeol, mangiferin and phenolic acids in the pulp and peel of mango fruit will be discussed. In general spray application of 0.2% iron(II) sulphate (FeSO4 ) 30 days before harvest, harvest at sprung stage, storage of mature green fruit at 5 °C for 12 days prior to ripening, fumigation of mature green fruit with 10-5  mol L-1 and/or 10-4  mol L-1 MeJA for 24 h or 20 and/or 40 µL L-1 NO for 2 h upregulate the levels of lupeol, mangiferin and phenolic acids in pulp and peel of ripe mango fruit. © 2019 Society of Chemical Industry.


Assuntos
Hidroxibenzoatos/análise , Mangifera/química , Triterpenos Pentacíclicos/análise , Extratos Vegetais/análise , Xantonas/análise , Manipulação de Alimentos , Frutas/química , Frutas/crescimento & desenvolvimento , Mangifera/crescimento & desenvolvimento
17.
J Food Sci Technol ; 56(4): 1793-1800, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30996415

RESUMO

This work evaluated the production of dehydrated mangoes (Mangifera indica L.) and the effectiveness of ultrasonic-assisted osmotic dehydration on the drying kinetics of mangoes. Cube shaped mango samples were pretreated using ultrasound-assisted osmotic dehydration (UAOD) and dried in a circulating drying oven. An experimental design was created to evaluate the effect of pretreatment time and osmotic solution concentration on the water loss and sugar gain in the osmotic dehydration and on the drying time. The ultrasonic pretreatment was carried out in a bath ultrasound operating at 25 kHz and outputting 55 W/m3 of power. Osmotic solution ranging from 0 to 500 kg sucrose/m3 was applied in the treatments, and air drying was carried out at 60 °C. A mathematical model was developed for the osmotic pretreatment, and Fick's law was used to model the air-drying process. The mass transfer coefficients were estimated for the ultrasonic-assisted osmotic dehydration, and the apparent water diffusivity was estimated for the air-drying process. The mass transfer coefficient ranged from 0.017 to 0.109 m2/s and the resistance to mass transfer at the surface ranged from 0.26 × 10-6 to 1.22 × 10-6 m2/s on the UAOD, while the apparent water diffusivity during air drying ranged from 5.94 × 10-9 to 8.41 × 10-9 m2/s. Mangoes presented a different behavior when compared to other fruits. The ultrasonic pretreatment was effective only when associated with an osmotic solution at 500 kg sucrose/m3.

18.
J Food Sci Technol ; 56(4): 2073-2082, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30996441

RESUMO

Fruit ripening induces changes that strongly affect their matrices, and consequently, the bioaccessibility/bioavailability of its phenolic compounds. Flesh from 'slightly' (SR), 'moderately' (MR) and 'fully' (FR) ripe 'Ataulfo' mangoes were physicochemically characterized, and digested in vitro to evaluate how ripening impacts the bioaccessibility/bioavailability of its phenolic compounds. Ripening increased the flesh's pH and total soluble solids, while decreasing citric acid, malic acid and titratable acidity. MR and FR mango phenolics had higher bioaccessibility/bioavailability, which was related to a decreased starch and dietary fiber (soluble and insoluble) content. These results suggest that phenolics are strongly bound to the fruit's matrix of SR mango, but ripening liberates them as the major polysaccharides are hydrolyzed, thus breaking covalent bonds and disrupting carbohydrate-phenolic complexes. There was also a higher release percentage in the gastric digestion phase, as compared to the intestinal. Our data showed that the bioaccessibility/bioavailability of mango phenolics depends on fruit ripening and on digestion phase.

19.
J Food Sci Technol ; 56(5): 2536-2544, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168135

RESUMO

Mango seed kernel, a by-product of the processing industry, can be valorized as a potential source of bioactive compounds. Binary mixtures of ethanol and water, used in solid-liquid extraction (SLE), have drawn interest as an effective means of recovering phytochemicals from plant materials because these solvents can be used in food applications and their synergistic effect makes them a superior solvent over their pure counterparts. Total phenolic content (TPC) and HPLC chromatograms of each ethanolic extract revealed that ethanol concentration had a significant effect on phenolic compound recovery, wherein, TPC of mango kernel varied from 18.19 to 101.68 mg gallic acid equivalence (GAE) per gram of sample. Subsequently, the antioxidant activities (AOAc) of the extracts, measured by scavenging activities with the DPPH+ (1,1-diphenyl-2-picrylhydrazyl) radical and ferric reducing antioxidant power (FRAP) assay, ranged from 8.19 to 85.45 mmol/L and 3.82-55.61 mmol/L Trolox equivalence, respectively. The solvent containing 50% (w/w) ethanol-water had the highest TPC and exhibited the most potent reducing and radical scavenging activities. With the use of an HPLC-UV/Vis, gallic acid, caffeic acid, rutin and penta-O-galloyl-ß-d-glucose were identified to be present in the mango seed kernel. Results show that the mango seed kernel is a viable source of bioactive compounds which can be recovered with water-ethanol binary solvent systems.

20.
Cell Biol Int ; 42(6): 747-753, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29427465

RESUMO

Cardiovascular diseases are major causes of death worldwide. Beyond the classical cholesterol risk factor, other conditions such as oxidative stress are well documented to promote atherosclerosis. The Mangifera indica L. extract (Vimang®) was reported to present antioxidant and hypocholesterolemic properties. Thus, here we evaluate the effects of Vimang treatment on risk factors of the atherosclerosis prone model of familial hypercholesterolemia, the LDL receptor knockout mice. Mice were treated with Vimang during 2 weeks and were fed a cholesterol-enriched diet during the second week. The Vimang treated mice presented significantly reduced levels of plasma (15%) and liver (20%) cholesterol, increased plasma total antioxidant capacity (10%) and decreased reactive oxygen species (ROS) production by spleen mononuclear cells (50%), P < 0.05 for all. In spite of these benefits, the average size of aortic atherosclerotic lesions stablished in this short experimental period did not change significantly in Vimang treated mice. Therefore, in this study we demonstrated that Vimang has protective effects on systemic and tissue-specific risk factors, but it is not sufficient to promote a reduction in the initial steps of atherosclerosis development. In addition, we disclosed a new antioxidant target of Vimang, the spleen mononuclear cells that might be relevant for more advanced stages of atherosclerosis.


Assuntos
Colesterol/sangue , Mangifera/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de LDL/genética , Animais , Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/veterinária , Colesterol/análise , Dieta Hiperlipídica , Leucócitos/citologia , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mangifera/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NADP/química , NADP/metabolismo , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/deficiência , Triglicerídeos/análise , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA