Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.000
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(13): e23745, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923065

RESUMO

Idiopathic granulomatous mastitis (IGM), a recurrent inflammation disease of the non-lactating breast, has had an increasing clinical morbidity rate in recent years, and its complicated symptoms and unclear etiology make it challenging to treat. This rare benign inflammatory breast disease, centered on the lobules, represents the most challenging type of non-puerperal mastitis (NPM), also known as non-lactating mastitis. In this study, patients diagnosed with IGM (M, n = 23) were recruited as cases, and patients with benign control breast disease (C, n = 17) were enrolled as controls. Cytokine microarray detection measured and analyzed the differentially expressed cytokine factors between IGM and control patients. Then, we verified the mRNA and protein expression levels of the significantly changed cytokine factors using Q-RT-PCR, ELISA, western blot, and IHC experiments. The cytokine factor expression levels significantly changed compared to the control group. We observed a significant increase between IGM and control patients in cytokine factors expression, such as interleukin-1ß (IL-1ß), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, MIP-1ß, tumor necrosis factor receptor 2 (TNF RII). Then, we verified the expression of these top five dysregulated factors in both mRNA and protein levels. Our results demonstrated the cytokine map in IGM and indicated that several cytokines, especially chemokines, were associated with and significantly dysregulated in IGM tissues compared to the control group. The chemokine factors involved might be essential in developing and treating IGM. These findings would be helpful for a better understanding of IGM and offer valuable insights for devising novel diagnostic and therapeutic strategies.


Assuntos
Quimiocinas , Mastite Granulomatosa , Humanos , Feminino , Mastite Granulomatosa/metabolismo , Mastite Granulomatosa/genética , Adulto , Quimiocinas/metabolismo , Quimiocinas/genética , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Estudos de Casos e Controles , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética
2.
FASEB J ; 38(7): e23587, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568835

RESUMO

Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.


Assuntos
Mastite , Infecções Estafilocócicas , Feminino , Humanos , Ratos , Animais , Staphylococcus aureus/fisiologia , Proteômica , Ácido Araquidônico/metabolismo , Mastite/microbiologia , Mastite/patologia , Mastite/veterinária , Inflamação/metabolismo , Redes e Vias Metabólicas , Glândulas Mamárias Animais/metabolismo , Infecções Estafilocócicas/metabolismo
3.
FASEB J ; 38(2): e23383, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197892

RESUMO

Mastitis is the most frequent disease of cows and has well-recognized detrimental effects on animal wellbeing and dairy farm profitability. With the advent of the postantibiotic era, alternative antibiotic agents, especially probiotics, have received increasing attention in the treatment of mastitis. Based on research showing that Lactobacillus reuteri (L. reuteri) has anti-inflammatory effects, this study explored the protective effects and mechanisms of L. reuteri against mastitis induced by Staphylococcus aureus (S. aureus) in mice. First, mice with S. aureus-induced mastitis were orally administered L. reuteri, and the inflammatory response in the mammary gland was observed. The results showed that L. reuteri significantly inhibited S. aureus-induced mastitis. Moreover, the concentration of oxytocin (OT) and protein expression of oxytocin receptor (OTR) were measured, and inhibition of OTR or vagotomy reversed the protective effect of L. reuteri or its culture supernatant (LCS) on S. aureus-induced mastitis. In addition, in mouse mammary epithelial cells (MMECs), OT inhibited the inflammation induced by S. aureus by inhibiting the protein expression of OTR. It was suggested that L. reuteri protected against S. aureus-induced mastitis by releasing OT. Furthermore, microbiological analysis showed that the composition of the microbiota was altered, and the relative abundance of Lactobacillus was significantly increased in gut and mammary gland after treatment with L. reuteri or LCS. In conclusion, our study found the L. reuteri inhibited the mastitis-induced by S. aureus via promoting the release of OT, and treatment with L. reuteri increased the abundance of Lactobacillus in both gut and mammary gland.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Mastite , Infecções Estafilocócicas , Feminino , Humanos , Animais , Bovinos , Camundongos , Ocitocina/farmacologia , Ocitocina/uso terapêutico , Staphylococcus aureus , Mastite/terapia , Receptores de Ocitocina , Lactobacillus
4.
J Infect Dis ; 229(2): 535-546, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37592764

RESUMO

Mastitis caused by antibiotic-resistant strains of Staphylococcus aureus is a significant concern in the livestock industry due to the economic losses it incurs. Regulating immunometabolism has emerged as a promising approach for preventing bacterial inflammation. To investigate the possibility of alleviating inflammation caused by S aureus infection by regulating host glycolysis, we subjected the murine mammary epithelial cell line (EpH4-Ev) to S aureus challenge. Our study revealed that S aureus can colonize EpH4-Ev cells and promote inflammation through hypoxic inducible factor 1α (HIF1α)-driven glycolysis. Notably, the activation of HIF1α was found to be dependent on the production of reactive oxygen species (ROS). By inhibiting PFKFB3, a key regulator in the host glycolytic pathway, we successfully modulated HIF1α-triggered metabolic reprogramming by reducing ROS production in S aureus-induced mastitis. Our findings suggest that there is a high potential for the development of novel anti-inflammatory therapies that safely inhibit the glycolytic rate-limiting enzyme PFKFB3.


Assuntos
Mastite , Staphylococcus aureus , Feminino , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo , Células Epiteliais/microbiologia , Inflamação , Glicólise , Proliferação de Células , Fosfofrutoquinase-2/metabolismo
5.
J Bacteriol ; 206(5): e0007124, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38629875

RESUMO

Bovine mastitis is a frequent infection in lactating cattle, causing great economic losses. Staphylococcus aureus represents the main etiological agent, which causes recurrent and persistent intramammary infections because conventional antibiotics are ineffective against it. Mastoparan-like peptides are multifunctional molecules with broad antimicrobial potential, constituting an attractive alternative. Nevertheless, their toxicity to host cells has hindered their therapeutic application. Previously, our group engineered three mastoparan-L analogs, namely mastoparan-MO, mastoparan-R1, and [I5, R8] MP, to improve cell selectivity and potential. Here, we were interested in comparing the antibacterial efficacy of mastoparan-L and its analogs against bovine mastitis isolates of S. aureus strains, making a correlation with the physicochemical properties and structural arrangement changes promoted by the sequence modifications. As a result, the analog's hemolytic and/or antimicrobial activity was balanced. All the peptides displayed α-helical folding in hydrophobic and membrane-mimetic environments, as determined by circular dichroism. The peptide [I5, R8] MP stood out for its enhanced selectivity and antibacterial features related to mastoparan-L and the other derivatives. Biophysical approaches revealed that [I5, R8] MP rapidly depolarizes the bacterial membrane of S. aureus, causing cell death by subsequent membrane disruption. Our results demonstrated that the [I5, R8] MP peptide could be a starting point for the development of peptide-based drugs for the treatment of bovine mastitis, with the advantage of no residue in milk, which would help reduce the use of classical antibiotics.IMPORTANCEStaphylococcus aureus is a leading cause of mastitis, the world's most important dairy cattle disease. The multidrug resistance and zoonotic potential of S. aureus, besides the likelihood of antibiotic residues in milk, are of critical concern to public and animal health. Antimicrobial peptides offer a novel antimicrobial strategy. Here, we demonstrate that [I5, R8] MP is a potent and selective peptide, which acts on S. aureus by targeting the bacterial membrane. Therefore, understanding the physicochemical determinants and the modes of action of this class of antimicrobials opens novel prospects for peptide development with enhanced activities in the bovine mastitis context.


Assuntos
Antibacterianos , Peptídeos e Proteínas de Sinalização Intercelular , Mastite Bovina , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Feminino , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Venenos de Vespas/farmacologia , Venenos de Vespas/química
7.
Biochem Biophys Res Commun ; 739: 150569, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39186869

RESUMO

Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated. In this study, lipopolysaccharide (LPS)-induced mouse mastitis model was used and cytokines such as Tnf-α, Il-1ß, Il-6, Cxcl1, Cxcl2 and Ccl2 were significantly increased in inflammatory mammary gland as shown by real time-qPCR. However, the mice with MyD88-deficienet in mammary epithelial cells (cKO) showed a reduction in the expression of Tnf-α, Il-1ß, Il-6, Cxcl1 and Cxcl2 in mammary gland compared with control mice, when subjected to LPS induced mastitis. Immunohistochemical staining of cleaved caspase-3 showed that the cell apoptosis induced by inflammation were decreased in MyD88 cKO mice. Furthermore, there were significantly fewer infiltrating inflammatory cells in alveolar lumen of MyD88 cKO mice, including Ly6G-positive neutrophils and F4/80-positive macrophages. RNA-seq in LPS treated mammary glands showed that MyD88 cKO mice had significantly downregulated inflammation-related genes and upregulated genes related to anti-inflammation processes and lipid metabolism compared with control mice. Thus, these results demonstrate that MyD88 in mammary epithelial cells is essential for mastitis progression. And this study not only has important implications for understanding the innate immune response in mammary epithelial cells, but also potentially helps the development of new therapeutic drugs for treating mastitis.

8.
Mamm Genome ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215776

RESUMO

MicroRNAs (miRNAs) act as key gene expression regulators, influencing intracellular biological and pathological processes. They are of significant interest in animal genetics as potential biomarkers for animal selection and health. This study aimed to unravel the complex miRNA signature involved in mastitis in in vitro cell culture. For this purpose, we constructed a control and treatment model in ovarian mammary epithelial cells to analyze miRNA responses upon Staphylococcus aureus (S. aureus) stimulation. The high-throughput Illumina Small RNA protocol was employed, generating an average of 7.75 million single-end reads per sample, totaling 46.54 million reads. Standard bioinformatics analysis, including cleaning, filtering, miRNA quantification, and differential expression was performed using the miRbase database as a reference for ovine miRNAs. The results indicated differential expression of 63 miRNAs, including 33 up-regulated and 30 down-regulated compared to the control group. Notably, miR-10a, miR-10b, miR-21, and miR-99a displayed a significant differential expression (p ≤ 0.05) associated to signal transduction, transcriptional pathways, diseases of signal transduction by growth factor receptors and second messengers, MAPK signaling pathway, NF-κB pathway, TNFα, Toll Like Receptor 4 (TLR4) cascade, and breast cancer. This study contributes expanding miRNA databases, especially for sheep miRNAs, and identifies potential miRNA candidates for further study in biomarker identification for mastitis resistance and diagnosis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39207599

RESUMO

PURPOSE: The aim of the study was to explore the association between mastitis and subsequent breast cancer. METHODS: This retrospective cohort study included women aged ≥ 18 years with an initial mastitis diagnosis from 315 office-based gynecologists in Germany between January 2005 and December 2021. Women without mastitis were matched to women with mastitis using propensity score matching based on age, index year, average yearly consultation frequency during the follow-up period, and coexisting diseases such as obesity, benign mammary dysplasia, hypertrophy of the breast, unspecified lump of breast, and other disorders of the breast. The 10-year cumulative incidence of breast cancer for the mastitis-cohort and non-mastitis-cohort was studied with Kaplan-Meier curves using the log-rank test. The association between mastitis and breast cancer was studied separately for four age groups with univariable Cox regression analyses. RESULTS: In the follow-up period of 7 months to 10 years after the index date, 2.9% of mastitis patients and 2.4% of matched non-mastitis patients were diagnosed with breast cancer. A Cox regression analysis revealed a significant association between mastitis and subsequent breast cancer (HR: 1.37; 95% CI: 1.11-1.70). According to the age-stratified analyses, a strong and significant association was only observed in the age group > 50 years (HR: 1.73; 95% 1.25-2.40). CONCLUSION: The findings of our retrospective cohort study support an association between mastitis and subsequent breast cancer diagnoses in women aged > 50 years. The pathophysiological basis and possibility of confounders however requires further investigation.

10.
Int J Med Microbiol ; 315: 151623, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781847

RESUMO

OBJECTIVES: Staphylococcus aureus (S. aureus) spreads worldwide and occurrence of mastitis caused by it holds significant implications for public health. We aim to reveal the molecular typing, antibiotic resistance and virulence gene profile of S. aureus causing mastitis through investigation. METHODS: A total of 200 isolates of S. aureus were collected from outpatients infected with mastitis in a hospital in Beijing from 2020.7 to 2021.7. The molecular characteristics were analyzed by MLST and spa typing, virulence genes were screened by PCR, antibiotic susceptible test was performed by VITEK® 2 Compact system and phylogenetic analysis was performed by MEGA11 and iTOL. RESULTS: Nineteen sequence types (STs) belonging to 9 clone complexes (CCs) were identified. ST22 was the most dominant clone (77.0%, 154/200). MRSA accounted for 19.0% (38/200) and 89.5% (34/38) of MRSA isolates belonged to CC22 and CC59. The isolates had relatively low levels of antibiotic resistance, with the exception of ß-lactams and macrolides with resistance rates above 50.0%. The carrying rate of pvl in the ST22-MRSA strains were 84.2% and the detection rates of seb and pvl in the MRSA isolates were significantly higher than those in the MSSA isolates, while the hlg, fnbA and sdrD showed opposite results. Whole genome sequenced specimens of MRSA strains X4 and B5 show the same evolutionary origin as ST22 EMRSA-15 (HE681097), which is popular in Europe. CONCLUSIONS: The method based on molecular epidemiology is an important tool for tracking the spread of S. aureus infections. We need to be alert to the major MRSA clones CC22 and CC59 in the region and be vigilant to the possible pandemic and spread of ST22 EMRSA-15.


Assuntos
Antibacterianos , Infecções Comunitárias Adquiridas , Mastite , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Virulência , Humanos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Feminino , Pequim/epidemiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Prevalência , Fatores de Virulência/genética , Mastite/microbiologia , Mastite/epidemiologia , Antibacterianos/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/classificação , China/epidemiologia
11.
Appl Environ Microbiol ; 90(8): e0046124, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39012099

RESUMO

Aerococcus viridans (A. viridans) is an important opportunistic zoonotic pathogen that poses a potential threat to the animal husbandry industry, such as cow mastitis, due to the widespread development of multidrug-resistant strains. Phage lysins have emerged as a promising alternative antibiotic treatment strategy. However, no lysins have been reported to treat A. viridans infections. In this study, the critical active domain and key active sites of the first A. viridans phage lysin AVPL were revealed. AVPL consists of an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and a C-terminal binding domain comprising two conserved LysM. H40, N44, E52, W68, H147, T157, F60, F64, I77, N92, Q97, H159, V160, D161, and S42 were identified as key sites for maintaining the activity of the catalytic domain. The LysM motif plays a crucial role in binding AVPL to bacterial cell wall peptidoglycan. AVPL maintains stable activity in the temperature range of 4-45°C and pH range of 4-10, and its activity is independent of the presence of metal ions. In vitro, the bactericidal effect of AVPL showed efficient bactericidal activity in milk samples, with 2 µg/mL of AVPL reducing A. viridans by approximately 2 Log10 in 1 h. Furthermore, a single dose (25 µg) of lysin AVPL significantly reduces bacterial load (approximately 2 Log10) in the mammary gland of mice, improves mastitis pathology, and reduces the concentration of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in mammary tissue. Overall, this work provides a novel alternative therapeutic drug for mastitis induced by multidrug-resistant A. viridans. IMPORTANCE: A. viridans is a zoonotic pathogen known to cause various diseases, including mastitis in dairy cows. In recent years, there has been an increase in antibiotic-resistant or multidrug-resistant strains of this pathogen. Phage lysins are an effective approach to treating infections caused by multidrug-resistant strains. This study revealed the biological properties and key active sites of the first A. viridans phage lysin named AVPL. AVPL can effectively kill multidrug-resistant A. viridans in pasteurized whole milk. Importantly, 25 µg AVPL significantly alleviates the symptoms of mouse mastitis induced by A. viridans. Overall, our results demonstrate the potential of lysin AVPL as an antimicrobial agent for the treatment of mastitis caused by A. viridans.


Assuntos
Aerococcus , Bacteriófagos , Infecções por Bactérias Gram-Positivas , Mastite , Animais , Feminino , Camundongos , Aerococcus/efeitos dos fármacos , Bacteriófagos/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Mastite/microbiologia , Mastite/tratamento farmacológico , Mastite/veterinária , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Peptidoglicano/metabolismo , Terapia por Fagos , Proteínas Virais/metabolismo , Proteínas Virais/genética
12.
BMC Microbiol ; 24(1): 310, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174931

RESUMO

BACKGROUND: Bovine mastitis results in significant economic losses for the dairy industry globally due to milk production losses and decreased herd efficiency. This research aimed to isolate, select, and characterize indigenous lactobacilli with probiotic properties. A total of 40 lactobacilli were isolated from healthy milk samples of cattle and identified at the species level through 16S rDNA sequencing. All isolates were initially screened for antimicrobial activity, and selected isolates underwent in vitro assessment of probiotic properties. RESULTS: Among the lactobacilli isolates, varying levels of activity (9 to 19 mm) against cattle mastitogens; Stapylococcus aureus (Staph. aureus), Escherichia coli (E. coli) and Streptococcus dysgalactiae (Strep. dysgalactiae) were observed in the well diffusion assay. These isolates demonstrated auto-aggregation (ranging from 14.29 ± 0.96% to 62.11 ± 1.09%) and co-aggregate (ranging from 9.21 ± 0.14% to 55.74 ± 0.74%) with mastitogens after 2 h. Lactobacillus (Lb.) plantarum CM49 showed sensitivity to most antibiotics tested and exhibited strong inhibitory effects, with mean log10 reductions of 3.46 for Staph. aureus, 2.82 for E. coli, and 1.45 for Strep. dysgalactiae in co-culture experiments. Furthermore, Lb. plantarum CM49 significantly decreased the adhesion rate of mastitogens on the bovine mammary cell line and mouse model, demonstrating its potential effectiveness in preventing mastitis. CONCLUSION: It is concluded that Lb. plantarum CM49 has remarkable probiotic potential with activity against cattle mastitogens in the laboratory and cell culture and competitively excludes mastitogens from bovine mammary cells and ameliorates Staph. aureus-induced mastitis in mice.


Assuntos
Escherichia coli , Lactobacillus plantarum , Mastite Bovina , Leite , Probióticos , Staphylococcus aureus , Animais , Bovinos , Probióticos/farmacologia , Mastite Bovina/microbiologia , Mastite Bovina/prevenção & controle , Lactobacillus plantarum/fisiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/genética , Feminino , Leite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/fisiologia , Testes de Sensibilidade Microbiana
13.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710998

RESUMO

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Enterite , Variação Genética , Mastite Bovina , Leite , Filogenia , Animais , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/classificação , Clostridium perfringens/patogenicidade , Bovinos , Egito , Feminino , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Leite/microbiologia , Enterite/microbiologia , Enterite/veterinária , Mastite Bovina/microbiologia , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Fosfolipases Tipo C/genética , Indústria de Laticínios , Fazendas , Toxinas Bacterianas/genética
14.
Crit Rev Microbiol ; : 1-14, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916977

RESUMO

Bovine mastitis is a mammary gland inflammation that can occur due to infectious pathogens, Staphylococcus aureus and Escherichia coli, which are, respectively, the most prevalent Gram-positive and Gram-negative bacteria associated with this disease. Currently, antibiotic treatment has become more complicated due to the presence of resistant pathogens. This review, therefore, aims to identify the most common resistance genes reported for these strains in the last four years. During the review, it was noted that blaZ, blaSHV, blaTEM, and blaampC are the most reported genes for S. aureus and E. coli, associated with drug inactivation, mainly ß-lactamases. They are characterized by generating bacterial resistance to ß-lactam antibiotics, the most common treatment in animal and human bacterial treatments (penicillins and cephalosporins, among others). Genes associated with efflux systems were also present in the two strains and included norA, tetA, tetC, and tetK, which generate resistance to macrolide and tetracycline antibiotics. Additionally, the effects of spreading resistance between animals and humans through direct contact (such as consumption of contaminated milk) or indirect contact (through environmental contamination) has been deeply discussed, emphasizing the importance of having adequate sanitation and antibiotic control and administration protocols.

15.
Ann Surg Oncol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969857

RESUMO

BACKGROUND: Granulomatous mastitis (GM) is a benign, chronic, inflammatory disease lacking clear treatment guidelines. The purpose of this American Society of Breast Surgeons (ASBrS) prospective, multisite registry was to characterize the presentation of GM and identify treatment strategies associated with symptom resolution and optimal cosmesis. METHODS: ASBrS members entered data into a registry on patient demographics, treatment, symptoms, and cosmesis over a 1-year period. Initial symptoms were graded as mild, moderate, or severe. The Chi-square test and logistic regression were used to identify factors related to symptom improvement and cosmesis. RESULTS: Overall, 112 patients with a mean age of 36 years were included. More patients were Hispanic (49.1%) and from the Southwest (41.1%), and management included observation (4.5%), medical (70.5%), surgical (5.4%), or combination treatment (19.6%). Immunosuppression was used in 83 patients (74.1%), including 43 patients who received intralesional steroid injections. Patients with severe symptoms were more likely to undergo surgical intervention compared with those with mild or moderate symptoms (21.4% vs. 0% and 7.5%, respectively; p = 0.004). Within 1 year, 85 patients (75.9%) experienced symptom improvement and/or resolution at a median of 3 months. Receipt of immunosuppressive therapy was predictive of improvement or resolution at 1 month (odds ratio 4.22; p = 0.045). One-year physician-assessed cosmesis was excellent or good for 20/35 patients (57.1%) and was not associated with type of treatment or symptom severity. CONCLUSION: Although GM can have a protracted course, the majority of patients in this registry resolved within 1 year, with good cosmetic result. Treatment with immunosuppression appears to be most beneficial, and a symptom-based algorithm may be helpful to guide treatment.

16.
Cytokine ; 174: 156471, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103301

RESUMO

The mammary gland is an adipose tissue containing not only adipocytes but also epithelial, endothelial, and immune cells. Epithelial cells and macrophages, as the integral components of the immune system, are on the front line of defense against infection. Our preliminary work proved that caffeic acid (CA) can effectively inhibit the inflammatory cascade of bovine mammary epithelial cells (BMEC) induced by lipopolysaccharide (LPS) and maintain cellular integrity and viability. Here, we investigated the therapeutic effect of CA on LPS-induced mice mastitis and explored its regulatory mechanism on macrophage inflammatory response induced by LPS in vitro. Firstly, the mice mastitis model was established by intramammary injection with 10 µg LPS, after which different CA doses (5, 10, 15 mg/kg) were administered. Then, the pathological section, myeloperoxidase (MPO) activity, proinflammatory factors and chemokines releasement, and redox state of mammary tissues were assessed, confirming CA's effectiveness on mice mastitis. In vitro, we validated the therapeutic relevance of CA in relieving LPS-induced RAW264.7 inflammatory and oxidative stress responses. Moreover, we further provided evidence that CA significantly reduced LPS-induced reactive oxygen species (ROS) generation via NADPH oxidase (NOX), which improved the imbalance relationship between nuclear factor kappa-B (NF-κB) and NF-E2 p45-related factor 2 (Nrf2) and led to a marked weakening of M1 polarization. The NOX-ROS signal inhibited by CA weakened the oxidative burst and neutrophil chemotaxis of macrophages, thus alleviating the immune cascade in mammary gland tissue and reducing the LPS-induced inflammatory damage. Collectively, CA would be a potential candidate or antibacterial synergist for curbing mastitis.


Assuntos
Lipopolissacarídeos , Mastite , Humanos , Feminino , Animais , Bovinos , Camundongos , Lipopolissacarídeos/efeitos adversos , Espécies Reativas de Oxigênio , NADPH Oxidases , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , NF-kappa B , Modelos Animais de Doenças , Macrófagos , Células Epiteliais
17.
Microb Pathog ; 195: 106902, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218374

RESUMO

Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35 %), six E. coli (75 %) and seven Klebsiella (100 %) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.

18.
Microb Pathog ; 191: 106675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705216

RESUMO

Bovine mastitis, caused by Streptococcus agalactiae (Group B Streptococcus; GBS), poses significant economic challenges to the global dairy industry. Mouse models serves as valuable tools for assessing GBS-induced infections as an alternative to large animals. This study aimed to investigate the LD50 dose, organ bacterial load, and quantification of peritoneal leukocyte populations for GBS serotypes Ia and II isolates from China and Pakistan. Additionally, we measured indicators such as lactoferrin, albumin, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-2) and anti-inflammatory cytokines (IL-10 and TGF-ß) in serum and tissue samples were evaluated using ELISA and qPCR, respectively. BALB/c mice (4 mice per group) received individual intraperitoneal injections of 100 µl containing specific bacterial inoculum concentrations (ranging from 105 to 109 CFU per mouse) of Chinese and Pakistani GBS isolates (serotypes Ia and II). Control groups received 100 µL of sterile PBS. Results revealed that the LD50 bacterial dose causing 50 % mortality in mice was 107 CFU. The highest bacterial load in all experimental groups was quantified in the peritoneum, followed by blood, mammary gland, liver, spleen, lungs, and brain. The most significant bacterial dissemination was observed in mice inoculated with Pakistani serotype Ia at 24 h, with a subsequent notable decline in bacterial counts at day 3. Notably, infection with Pakistani serotype Ia showed a trend of increased total leukocyte counts, significantly higher than Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II. A substantial influx of neutrophils and lymphocytes was observed in response to all tested serotypes, with Pakistani serotype Ia inducing a significantly higher influx compared to other groups (Pakistani serotype II, Chinese serotype Ia, and Chinese serotype II). Furthermore, TNF-α, IL-1ß, IL-2, and IL-6 expressions were significantly increased in mice one day after infection with the Pakistani serotype Ia. Compared to mice infected with the Pakistani serotype II, Chinese Serotype Ia, and Chinese serotype II, those infected with the Pakistani serotype Ia isolate exhibited the highest production of IL-10 and TGF-ß, along with significantly increased concentrations of lactoferrin, albumin, and MPO. These findings suggest that the persistence and severity of infection caused by the Pakistani serotype Ia may be linked to its ability to spread to deeper tissues. This study enhances our understanding of the clinical characteristics of bovine mastitis caused by S. agalactiae in China and Pakistan.


Assuntos
Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Sorogrupo , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/classificação , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/genética , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , China , Citocinas/metabolismo , Citocinas/sangue , Feminino , Paquistão , Carga Bacteriana , Bovinos , Dose Letal Mediana , Mastite Bovina/microbiologia
19.
Microb Pathog ; 187: 106509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185451

RESUMO

BACKGROUND: Mastitis is a serious disease which affects animal husbandry, particularly in cow breeding. The etiology of mastitis is complex and its pathological mechanism is not yet fully understood. Our previous research in clinical investigation has revealed that subclinical ketosis can increase the number of somatic cell counts (SCC) in milk, although the underlying mechanism remains unclear. Recent studies have further confirmed the significant role of mastitis. RESULTS: In this study, we aimed to examine the SCC, rumen microbiota, and metabolites in the milkmen of cows with subclinical ketosis. Additionally, we conducted a rumen microbiota transplant into mice to investigate the potential association between rumen microbiota disturbance and mastitis induced by subclinical ketosis in dairy cows. The study has found that cows with subclinical ketosis have a higher SCC in their milk compared to healthy cows. Additionally, there were significant differences in the rumen microbiota and the level of volatile fatty acid (VFA) between cows with subclinical ketosis and healthy cows. Moreover, transplanting the rumen microbiota from subclinical ketosis and mastitis cows into mice can induce mammary inflammation and liver function damage than transplanting the rumen flora from healthy dairy cows. CONCLUSIONS: In addition to the infection of mammary gland by pathogenic microorganisms, there is also an endogenous therapeutic pathway mediated by rumen microbiota. Targeted rumen microbiota modulation may be an effective way to prevent and control mastitis in dairy cows.


Assuntos
Cetose , Mastite Bovina , Microbiota , Feminino , Animais , Bovinos , Camundongos , Humanos , Mastite Bovina/patologia , Rúmen/metabolismo , Cetose/metabolismo , Cetose/veterinária , Leite , Lactação
20.
Microb Pathog ; 195: 106883, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39182856

RESUMO

Therapeutic management of mastitis faces significant challenges due to multidrug resistance. In the present study, multi-drug-resistant (MDR) Staphylococcus spp, Klebsiella pneumoniae, and Escherichia coli were isolated from bovine clinical mastitis cases and the phenotypic and genotypic multidrug resistance profiling was carried out. Silver nanoparticles (AgNPs) were biosynthesized using Ocimum sanctum leaf extracts and characterized via UV Vis absorption, Fourier Transform Infrared Spectroscopy, X-ray diffraction studies, Energy dispersive spectroscopy and Electron Microscopy. The determined minimum inhibitory concentration and minimum bactericidal concentration of the AgNPs against the recovered MDR isolates were 62.5 µg/ml and 125 µg/ml respectively. At a concentration of 50 µg/ml, the AgNPs demonstrated biofilm inhibitory activities of 80.35 % for MDR E. coli, 71.29 % for S. aureus and 60.18 % for MDR K. pneumoniae. Post-treatment observations revealed notable differences in biofilm formation across bacterial isolates. Furthermore, AgNP treatment led to significant downregulation of expression of the efflux pump genes acrB, acrE, acrF, and emrB in Gram-negative isolates and norB in Staphylococci isolates. This research underscores the potential for the development of an eco-friendly antimicrobial alternative in the form of green synthesized silver nanoparticles to combat drug resistance offering potential antibiofilm and efflux pump inhibitory activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA