Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 25(1): e202300636, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37902676

RESUMO

Protein-protein interaction (PPI) modulation is a promising approach in drug discovery with the potential to expand the 'druggable' proteome and develop new therapeutic strategies. While there have been significant advancements in methodologies for developing PPI inhibitors, there is a relative scarcity of literature describing the 'bottom-up' development of PPI stabilizers (Molecular Glues). The hub protein 14-3-3 and its interactome provide an excellent platform for exploring conceptual approaches to PPI modulation, including evolution of chemical matter for Molecular Glues. In this study, we employed a fragment extension strategy to discover stabilizers for the complex of 14-3-3 protein and an Estrogen Receptor alpha-derived peptide (ERα). A focused library of analogues derived from an amidine-substituted thiophene fragment enhanced the affinity of the 14-3-3/ERα complex up to 6.2-fold. Structure-activity relationship (SAR) analysis underscored the importance of the newly added, aromatic side chain with a certain degree of rigidity. X-ray structural analysis revealed a unique intermolecular π-π stacking binding mode of the most active analogues, resulting in the simultaneous binding of two molecules to the PPI binding pocket. Notably, analogue 11 displayed selective stabilization of the 14-3-3/ERα complex.


Assuntos
Proteínas 14-3-3 , Receptor alfa de Estrogênio , Proteínas 14-3-3/química , Ligação Proteica , Descoberta de Drogas/métodos , Relação Estrutura-Atividade
2.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35395683

RESUMO

Drug design targeting protein-protein interactions (PPIs) associated with the development of diseases has been one of the most important therapeutic strategies. Besides interrupting the PPIs with PPI inhibitors/blockers, increasing evidence shows that stabilizing the interaction between two interacting proteins may also benefit the therapy, such as the development of various types of molecular glues/stabilizers that mostly work by stabilizing the two interacting proteins to regulate the downstream biological effects. However, characterizing the stabilization effect of a stabilizer is usually hard or too complicated for traditional experiments since it involves ternary interactions [protein-protein-stabilizer (PPS) interaction]. Thus, developing reliable computational strategies will facilitate the discovery/design of molecular glues or PPI stabilizers. Here, by fully analyzing the energetic features of the binary interactions in the PPS ternary complex, we systematically investigated the performance of molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) methods on characterizing the stabilization effects of stabilizers in 14-3-3 systems. The results show that both MM/PBSA and MM/GBSA are powerful tools in distinguishing the stabilizers from the decoys (with area under the curves of 0.90-0.93 for all tested cases) and are reasonable for ranking protein-peptide interactions in the presence or absence of stabilizers as well (with the average Pearson correlation coefficient of ~0.6 at a relatively high dielectric constant for both methods). Moreover, to give a detailed picture of the stabilization effects, the stabilization mechanism is also analyzed from the structural and energetic points of view for individual systems containing strong or weak stabilizers. This study demonstrates a potential strategy to accelerate the discovery of PPI stabilizers.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Desenho de Fármacos , Entropia , Peptídeos , Ligação Proteica , Proteínas/química
3.
Eur J Med Chem ; 277: 116756, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191033

RESUMO

Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.


Assuntos
Proteínas , Humanos , Proteínas/química , Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Desenvolvimento de Medicamentos , Ligação Proteica , Estrutura Molecular , Proteólise/efeitos dos fármacos
4.
Neuron ; 93(5): 1082-1093.e5, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28279353

RESUMO

Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage.


Assuntos
Proteínas 14-3-3/metabolismo , Axônios/metabolismo , Glicosídeos/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Camundongos , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA