Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 40: 327-348, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441115

RESUMO

Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Neuropeptídeos/fisiologia , Neurotransmissores/fisiologia , Agressão/fisiologia , Animais , Drosophila , Comportamento Alimentar/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Arch Microbiol ; 206(4): 139, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436732

RESUMO

Salmonella exhibits a strong inducible acid tolerance response (ATR) under weak acid conditions, and can also induce high-risk strains that are highly toxic, acid resistant, and osmotic pressure resistant to aquatic products. However, the induction mechanism is not yet clear. Therefore, this study aims to simulate the slightly acidic, low-temperature, and high-protein environment during squid processing and storage. Through λRed gene knockout, exploring the effects of low-acid induction, long-term low-temperature storage, and two-component regulation on Salmonella ATR. In this study, we found the two-component system, PhoP/PhoQ and PmrA/PmrB in Salmonella regulates the amino acid metabolism system and improves bacterial acid tolerance by controlling arginine and lysine. Compared with the two indicators of total biogenic amine and diamine content, biogenic amine index and quality index were more suitable for evaluating the quality of aquatic products. The result showed that low-temperature treatment could inhibit Salmonella-induced ATR, which further explained the ATR mechanism from the amino acid metabolism.


Assuntos
Arginina , Diaminas , Animais , Decapodiformes , Salmonella/genética , Aminas Biogênicas
3.
Food Microbiol ; 121: 104527, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637089

RESUMO

This study aimed to screen spice extracts that can target the inhibition of biogenic amine (BA)-producing bacteria and reduce the BA accumulation in reduced-salt dry sausages. A total of 59 bacterial strains were isolated from reduced-salt dry sausages; among them, three isolates, namely, Staphylococcus epidermidis S1, S. saprophyticus S2, and S. edaphicus S3, had the strongest ability to produce BA. Eight spice extracts, i.e. Angelica dahurica, cinnamon, ginger, clove, fennel, Amomum, nutmeg, and orange peel, were extracted. The inhibition zone diameter and minimum inhibitory concentration indicated that A. dahurica, Amomum, and clove elicited the strongest inhibitory effect on BA-producing strains. Growth kinetics showed the strongest inhibitory effect of clove extracts, followed by Amomum and A. dahurica. In the medium system, clove extract was the most effective in controlling the total BA content by inhibiting of BA-producing strains S. epidermidis S1, S. saprophyticus S2, and S. edaphicus S3; their contents were reduced by 23.74%, 31.05% and 21.37%, respectively. In the dry sausage system, the control of BA accumulation by clove was quite prominent, and the total BA content was reduced from 373.70 mg/kg to 259.05 mg/kg on day 12.


Assuntos
Aminas Biogênicas , Especiarias , Fermentação , Bactérias , Cloreto de Sódio , Cloreto de Sódio na Dieta
4.
Artigo em Inglês | MEDLINE | ID: mdl-38346534

RESUMO

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Assuntos
Acidose Respiratória , Braquiúros , Decápodes , Animais , Hipercapnia/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Octopamina/metabolismo , Acidose Respiratória/metabolismo , Braquiúros/fisiologia , Brânquias/metabolismo
5.
Microb Pathog ; 181: 106175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244488

RESUMO

The aim of this study was to evaluate the probiotic potential of Lactobacillus brevis G145 isolated from traditional Khiki cheese, analyzing pH and bile resistance, physicochemical properties of the strain (hydrophobicity, auto- and co-aggregation), cholesterol removal, hydroxyl radical scavenging activity, adhesion ability to Caco-2 cells monolayer, and adhesion competition on Enterobacter aerogenes (competition, inhibition and replacement assays). Also, DNase, haemolytic activity, biogenic amine production and antibiotic susceptibility was investigated. L. brevis G145 was resistant to acidic pHs, bile salts, and simulated gastrointestinal conditions, and showed remarkable cell surface hydrophobicity (49.56%), co-aggregation (28.90%), auto-aggregation (34.10%), adhesion (9.40%), cholesterol removal (45.50%), and antioxidant (52.19%) properties. According to the results of well diffusion agar and disc diffusion agar tests, the highest and lowest inhibition zones were accounted for Staphylococcus aureus and Enterobacter aerogenes, respectively. The isolate did not show haemolytic, DNAse, and biogenic amine production properties. It was sensitive to antibiotics erythromycin, ciprofloxacin, and chloramphenicol, and semi-sensitive to imipenem, ampicillin, nalidixic acid, and nitrofurantoin. According to the findings of probiotic tests L. brevis G145 can be used as a in the food industry.


Assuntos
Enterobacter aerogenes , Levilactobacillus brevis , Probióticos , Humanos , Células CACO-2 , Ágar , Probióticos/farmacologia
6.
Amino Acids ; 55(6): 821-833, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37171719

RESUMO

Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H1 and H2 antagonists, but not by the H3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H1 and H2 receptors, and the H3 receptor, although it seemed not involved in the histamine effect on these cells. The H4 receptor was not expressed. H1 and H2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations.


Assuntos
Amina Oxidase (contendo Cobre) , Produtos Biológicos , Animais , Camundongos , Histamina/farmacologia , Histamina/metabolismo , Cimetidina/farmacologia , Catalase , Peróxido de Hidrogênio/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , Receptores Histamínicos/genética , Antagonistas dos Receptores Histamínicos H1/farmacologia , Neurônios/metabolismo , Produtos Biológicos/farmacologia
7.
J Sep Sci ; 46(22): e2300391, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688351

RESUMO

Histamine is a biogenic amine found in various body tissues and responsible for many critical vital activities. It is also responsible for allergic reactions in the body. Ingestion of foods containing high amounts of histamine can cause fatal allergic reactions. Albumin in plasma controls drugs and free concentrations of bioactive constituents taken to the body with food. Hence, this study aimed to characterise the interactions of histamine with bovine serum albumin. Capillary electrophoresis in the frontal analysis mode was employed in this study as a practical approach for assessing histamine-bovine serum albumin affinity. The plateau-shaped free histamine peak was well separated from the bovine serum albumin (BSA)-histamine complex peak. The free histamine concentration was obtained by following the height of the free histamine peak. Whereas the bound histamine concentrations were obtained by calculating the difference between the height of total and free histamine peaks. Histamine bound to BSA at one independent site with a Kb value of 2.50 × 103 L/mol. Moreover, an in-silico molecular docking method was performed, and it was revealed that the binding site of histamine was located closer to Lysine-131 in subdomain IIA of bovine serum albumin.


Assuntos
Hipersensibilidade , Albumina Sérica , Humanos , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Ligação Proteica , Simulação de Acoplamento Molecular , Histamina/metabolismo , Sítios de Ligação , Eletroforese Capilar , Espectrometria de Fluorescência , Termodinâmica
8.
Adv Exp Med Biol ; 1423: 79-99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525034

RESUMO

Mental disorders are strongly connected with several psychiatric conditions including depression, bipolar disorder, schizophrenia, eating disorder, and suicides. There are many biological conditions and pathways that define these complicated illnesses. For example, eating disorders are complex mental health conditions that require the intervention of geneticists, psychiatrists, and medical experts in order to alleviate their symptoms. A patient with suicidal ideation should first be identified and consequently monitored by a similar team of specialists. Both genetics and epigenetics can shed light on eating disorders and suicides as they are found in the main core of such investigations. In the present study, an analysis has been performed on two specific members of the GPCR family toward drawing conclusions regarding their functionality and implementation in mental disorders. Specifically, evolutionary and structural studies on the adrenoceptor alpha 2b (ADRA2B) and the 5-hydroxytryptamine receptor 1A (HTR1A) have been carried out. Both receptors are classified in the biogenic amine receptors sub-cluster of the GPCRs and have been connected in many studies with mental diseases and malnutrition conditions. The major goal of this study is the investigation of conserved motifs among biogenic amine receptors that play an important role in this family signaling pathway, through an updated evolutionary analysis and the correlation of this information with the structural features of the HTR1A and ADRA2B. Furthermore, the structural comparison of ADRA2B, HTR1A, and other members of GPCRs related to mental disorders is performed.


Assuntos
Transtornos Mentais , Receptor 5-HT1A de Serotonina , Receptores de Amina Biogênica , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptores Adrenérgicos alfa 2 , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Serotonina , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Ideação Suicida
9.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240203

RESUMO

The present study presents the tertiary assembly of a POM, peptide, and biogenic amine, which is a concept to construct new hybrid bio-inorganic materials for antibacterial applications and will help to promote the development of antivirus agents in the future. To achieve this, a Eu-containing polyoxometalate (EuW10) was first co-assembled with a biogenic amine of spermine (Spm), which improved both the luminescence and antibacterial effect of EuW10. Further introduction of a basic peptide from HPV E6, GL-22, induced more extensive enhancements, both of them being attributed to the cooperation and synergistic effects between the constituents, particularly the adaptive responses of assembly to the bacterial microenvironment (BME). Further intrinsic mechanism investigations revealed in detail that the encapsulation of EuW10 in Spm and further GL-22 enhanced the uptake abilities of EuW10 in bacteria, which further improved the ROS generation in BME via the abundant H2O2 involved there and significantly promoted the antibacterial effects.


Assuntos
Peroxidase , Compostos de Tungstênio , Compostos de Tungstênio/farmacologia , Peróxido de Hidrogênio , Peptídeos , Corantes , Antibacterianos/farmacologia
10.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175409

RESUMO

Biogenic amine-producing bacteria are responsible for the production of basic nitrogenous compounds (histamine, cadaverine, tyramine, and putrescine) following the spoilage of food due to microorganisms. In this study, we adopted a shotgun proteomics strategy to characterize 15 foodborne strains of biogenic-amine-producing bacteria. A total of 10,673 peptide spectrum matches belonging to 4081 peptides and corresponding to 1811 proteins were identified. Relevant functional pathways were determined, and strains were differentiated into hierarchical clusters. An expected protein-protein interaction network was created (260 nodes/1973 interactions). Most of the determined proteins were associated with networks/pathways of energy, putrescine metabolism, and host-virus interaction. Additionally, 556 peptides were identified as virulence factors. Moreover, 77 species-specific peptide biomarkers corresponding to 64 different proteins were proposed to identify 10 bacterial species. This represents a major proteomic dataset of biogenic-amine-producing strains. These results may also be suitable for new treatments for food intoxication and for tracking microbial sources in foodstuffs.


Assuntos
Proteômica , Putrescina , Putrescina/metabolismo , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Peptídeos/metabolismo , Alimentos Marinhos , Microbiologia de Alimentos
11.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067474

RESUMO

The storage quality and microbiome analysis of pickled swimming crabs (Portunus trituberculatus) stored at 20 and 4 °C were investigated. It showed that samples stored at 4 °C had a longer shelf life, lower total viable count (TVC), pH, and total volatile base nitrogen (TVB-N) contents than those stored at 20 °C. The biogenic amine (BA) results demonstrated that tyramine (tyr), putrescine (put), and cadaverine (cad) were the dominant amines in all samples, and samples stored at 4 °C had lower BA contents. A microbiome analysis indicated that a salt-alcohol water mixture significantly inhibited the growth of Tenericutes. Firmicutes, Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, and Cyanobacteria were the dominant bacteria of stored pickled crabs, and storage at 4 °C significantly inhibited the growth of dominant bacteria, more than that of 20 °C. In conclusion, 4 °C storage guaranteed the quality of samples by inhibiting changes in biochemical properties and the growth of dominant bacteria, thereby prolonging its shelf life.


Assuntos
Braquiúros , Microbiota , Animais , Temperatura , Armazenamento de Alimentos/métodos , Natação , Alimentos Marinhos/análise , Aminas Biogênicas/análise
12.
Food Technol Biotechnol ; 61(3): 294-301, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022886

RESUMO

Research background: One of the issues in the production of fish sauce is the legal constraints on the concentration of histamine produced by bacteria during fermentation because it causes allergic reactions in humans. The goal of this study is therefore to eliminate histamine from the final product after fermentation to enhance the quality of fish sauce for consumer safety, manufacturer exportability and domestic sales. Experimental approach: The bacteria that grow in the histamine medium were isolated from the salted fish. Their ability to degrade histamine in the media with high NaCl content was tested. The bacterium with the highest histamine-degrading ability was identified and the histamine-degrading conditions were optimized, including the incubation temperature and the amount of NaCl in the medium. The regression equation was generated and tested using the local fish sauce in which different concentrations of histamine were added. Results and conclusions: Among the five bacteria isolated from the salted fish, the isolate with the greatest ability to degrade histamine was identified as Staphylococcus debuckii sp. The study of the capacity of the isolated bacteria to degrade histamine using the synthetic histamine broth (pH=7.0, t=25 °C and NaCl 25 % (m/V)) indicated that they were able to degrade up to 56 % of histamine. The optimization analysis showed that increasing the pH of the medium to 7.5 and lowering the incubation temperature to 20 °C could improve the histamine removal from 56 to 73 %. The generated regression model, validated by the experimental results of histamine removal from fish sauce, showed an acceptable error (not more than 10 %). S. debuckii, the isolated histamine-degrading bacteria, could be used as an inoculum to reduce histamine accumulated in fish products. Novelty and scientific contribution: The microbiological technique developed here can decrease the histamine concentration in the final product, fish sauce, to improve its quality in terms of food safety and satisfy the histamine regulation requirement. The findings of this study can also be used to treat other liquid foods that contain high concentrations of histamine.

13.
J Sci Food Agric ; 103(3): 1315-1325, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36114594

RESUMO

BACKGROUND: Broad bean paste is a high nitrogen and high salt traditional Chinese condiment, which triggers biosynthesis of nitrogen hazards like biogenic amines (BAs). Mechanisms of association and applied research of functional safety and community assembly within multiple-microbial fermentation are currently lacking. Here, bioaugmentation was performed based on the profiles of BAs accumulation and microbial succession to evaluate the functional variation within broad bean paste fermentation. RESULTS: Putrescine, spermine, and spermidine were the main BAs during traditional broad bean paste fermentation. Staphylococcus, Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, and Bacillus were the predominant bacteria, whereas Aspergillus and Zygosaccharomyces dominated in fungal species, and community structure shifted upon salt exposure. PICRUSt software uncovered that Bacillus contributed significantly (>1%) to the amine oxidase gene family. Bacillus amyloliquefaciens 1-G6 and Bacillus licheniformis 2-B3 were screened to perform the bioaugmentation of broad bean paste, which achieved a 29% and 16% BA decrease respectively. Interaction network analysis showed that Cronobacter and Lactobacillus were significantly negatively correlated with Bacillus (ρ = -0.829 and ρ = -0.714, respectively, P < 0.05) in the B. amyloliquefaciens 1-G6 group, and Staphylococcus and Buttiauxella were inhibited by Bacillus (ρ = -0.657 and ρ = -0.543, respectively, P < 0.05) in the B. licheniformis 2-B3 group. CONCLUSION: The synergism of amine oxidase activity and microbial interactions led to the decline of BAs. Thus, this study improves our understanding of the underlying mechanisms of microbial succession and functional variation to further facilitate the optimization of the fermented food industry.


Assuntos
Bacillus , Fabaceae , Vicia faba , Bacillus/genética , Fermentação , Aminas Biogênicas , Vicia faba/microbiologia , Oxirredutases
14.
J Food Sci Technol ; 60(6): 1772-1781, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187992

RESUMO

Control of biogenic amines (BAs) is important to guarantee the safety of sausage-like fermented meat products. This study investigated the influences of tea polyphenols (TP) and its lipophilic palmitic acid-modified derivatives, palmitoyl-TP (pTP) and palmitoyl-epigallocatechin gallate (pEGCG), on BAs and microbial ecosystem in Chinese sausages. TP, epigallocatechin gallate (EGCG), pTP, and pEGCG all reduced the formation of BAs and N-nitrosodimethylamine at 0.05% (g/g); yet, compared with TP and EGCG, the modified derivatives exhibited stronger action on BAs decreasing (P < 0.05), and pEGCG showed the highest effect (a reduction of total BAs from 376.22 to 168.98 mg/kg compared to control). The improved inhibitory effect of pTP and pEGCG should be attributed to their stronger dual-directional regulation of the bacterial and fungal communities during the natural fermentation of sausage. The modified pTP and pEGCG highly suppressed the growth of Staphylococcus, Candida, and Kurtzmaniella, all of which were positively correlated with BAs formation (all P < 0.05). However, pTP and pEGCG worked more effectively than the unmodified ones to promote Lactobacillus, Lactococcus, and Debaryomyces (all P < 0.05). The results above are significant for the application of palmitoyl-TP and similar TP derivatives in meat products in consideration of food safety. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05717-z.

15.
J Biol Chem ; 297(5): 101268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600890

RESUMO

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


Assuntos
Poliaminas Biogênicas/química , Proteínas de Peixes/química , Simulação de Acoplamento Molecular , Receptores Odorantes/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Células HEK293 , Humanos , Lampreias , Camundongos , Mutagênese Sítio-Dirigida , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
BMC Microbiol ; 22(1): 149, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668352

RESUMO

BACKGROUND: Probiotic starters can improve the flavor profile, texture, and health-promoting properties of fermented foods. Tetragenococcus halophilus is a halophilic lactic acid bacterium that is a candidate starter for high-salt fermented foods. However, the species is known to produce biogenic amines, which are associated with neurotoxicity. Here, we report a probiotic starter strain of T. halophilus, EFEL7002, that is suitable for use in high-salt fermentation. RESULTS: EFEL7002 was isolated from Korean meju (fermented soybean) and identified as T. halophilus, with 99.85% similarity. The strain is safe for use in food as it is a non-hemolytic and non-biogenic amine producer. EFEL7002 is tolerant to gastrointestinal conditions and can adhere to Caco-2 cells. This strain showed antioxidant, anti-inflammatory, and protective effects against the human gut epithelial barrier. EFEL7002 grew well in media containing 0-18% NaCl showing maximum cell densities in 6% or 12% NaCl. CONCLUSIONS: T. halophilus EFEL7002 can be used as a health-promoting probiotic starter culture for various salty fermented foods.


Assuntos
Probióticos , Cloreto de Sódio , Aminas Biogênicas/análise , Células CACO-2 , Enterococcaceae , Fermentação , Microbiologia de Alimentos , Humanos , República da Coreia , Glycine max
17.
Fish Shellfish Immunol ; 130: 22-30, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084884

RESUMO

Octopamine and Tyramine are biogenic amines that have been demonstrated to play an important immunological role in white shrimp, Litopenaeus vannamei. G protein-coupled receptors, known as seven-transmembrane domain receptors, are a variety of neurotransmitter receptors which are sensitive to biogenic amines for initiating the cell signaling pathway. In present study, we cloned and characterized an octopamine/tyramine receptor (LvOA/TA-R) from the hemocytes of L. vannamei, with a 1194 b.p. open reading frame that encodes 398 amino acids. Several bioinformatics analyses indicated that LvOA/TA-R had seven conserved hydrophobic transmembrane domains. The phylogenetic analysis and multiple sequence alignment indicated that LvOA/TA-R was orthologous to the OA/TA receptor of tiger shrimp, P. monodon. LvOA/TA-R was expressed in hemocytes and nervous tissue including circumoesphageal connective tissue and the thoracic and abdominal ganglia. Significant increases in LvOA/TA-R occurred in hemocytes of L. vannamei under Vibrio alginolyticus infection within 30-60 min of infection. Here, we demonstrated that LvOA/TA-R expression is upregulated in response to Vibrio alginolyticus infection and appears to be functionally responsible for the observed immune response. These results suggest that LvOA/TA-R mediates regulation of immunity, which promotes the resistance of L. vannamei to V. alginolyticus.


Assuntos
Penaeidae , Vibrioses , Aminoácidos/metabolismo , Animais , Hemócitos , Imunidade Inata/genética , Octopamina/metabolismo , Filogenia , Receptores de Amina Biogênica , Receptores de Neurotransmissores/metabolismo , Tiramina , Vibrio alginolyticus/fisiologia
18.
Plant Cell Rep ; 41(12): 2261-2278, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36040502

RESUMO

KEY MESSAGE: Seed priming with dopamine reduced fluoride bioaccumulation, induced endogenous dopamine level, thereby orchestrating phytohormone homeostasis and biogenic amine metabolism, and modulating osmolyte and antioxidant machinery to enhance fluoride tolerance in rice. The aim of this study was to decipher the efficacy of seed priming with dopamine in curtailing the adverse impacts of fluoride toxicity in rice seedlings. Fluoride-stressed seedlings exhibited severe growth retardation, high fluoride bioaccumulation, electrolyte leakage and marked cellular injuries. Dopamine priming stimulated the overall physiological growth parameters during stress, via reduced formation of H2O2, malondialdehyde and methylglyoxal, due to lesser fluoride-accumulation. Fluoride stress-induced endogenous dopamine level was further induced upon dopamine priming, marked by the up regulated DOPA decarboxylase expression. Additionally, dopamine treatment led to escalated activity of catalase, superoxide dismutase and glutathione peroxidase in the stressed seedlings, concomitant with altered CAT, SOD and GPX expression. The higher accumulation of protective osmolytes (proline and total amino acids) and non-enzymatic antioxidants (phenolics, flavonoids, anthocyanins, glutathione and carotenoids), upon dopamine priming, during fluoride stress, could be linked with the altered expression pattern of the respective genes. Dopamine promoted active utilization of the biogenic amine (polyamines and ϒ-amino butyric acid) pools for toxicity mitigation, correlated with the modulation of the concerned enzyme activity and gene expression. Dopamine stimulated the accumulation of phytohormones like gibberellin and salicylic acid, via inducing the biosynthetic genes like gibberellin-3-oxidase (GA3ox) and isochorismate synthase (ICS), respectively, while depreciating the abscisic acid and melatonin level during fluoride stress. To our knowledge, this is the first documented report for the remedial role of dopamine priming against fluoride stress in any plant species. This study will open new arenas in sustainable agriculture for the exploitation of this pulsating biomolecule against fluoride stress.


Assuntos
Oryza , Oryza/metabolismo , Fluoretos/farmacologia , Fluoretos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Dopamina/metabolismo , Peróxido de Hidrogênio/metabolismo , Giberelinas/metabolismo , Antocianinas/metabolismo , Plântula/metabolismo , Antioxidantes/metabolismo , Sementes/metabolismo , Estresse Oxidativo
19.
Food Microbiol ; 104: 103988, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287811

RESUMO

Histamine is a biogenic amine significantly formed in fish sauce leading to a major concern in consumers. This study aimed to identify a halophilic bacterium for histamine degradation in fish sauce, and understand its genomic insight to enhance histamine degradation activity. We discovered the novel halophilic bacterium, Bacillus piscicola FBU1786, degrading histamine and other biogenic amines. Its histamine breakdown was growth-associated in a wide range of NaCl concentrations, pH, and temperature from 4% to 18%, 6.0 to 9.0, and 30 to 45 °C, respectively. Genome sequencing revealed the presence of Cu2+-binding oxidase-encoding genes and their heterologous expression with Cu2+ supplementation triggered histamine degradation in E. coli. The degree of histamine breakdown in B. piscicola FBU1786 could be enhanced by Cu2+ addition. Histamine degradation of the culture was evaluated in raw fish sauce mixtures to partially mimic the condition during fish sauce fermentation. Histamine degradation was suppressed to the extent of raw fish sauce, but could be restored by Cu2+ supplementation. Together, this study disclosed B. piscicola FBU1786 with the potent histamine degradation activity, identified Cu2+-binding oxidases responsible for histamine breakdown, and enhanced histamine degradation of the culture using Cu2+ supplementation.


Assuntos
Escherichia coli , Histamina , Animais , Escherichia coli/genética , Peixes , Alimentos , Genômica
20.
Proc Natl Acad Sci U S A ; 116(9): 3805-3810, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808766

RESUMO

Adrenergic signaling profoundly modulates animal behavior. For example, the invertebrate counterpart of norepinephrine, octopamine, and its biological precursor and functional antagonist, tyramine, adjust motor behavior to different nutritional states. In Drosophila larvae, food deprivation increases locomotor speed via octopamine-mediated structural plasticity of neuromuscular synapses, whereas tyramine reduces locomotor speed, but the underlying cellular and molecular mechanisms remain unknown. We show that tyramine is released into the CNS to reduce motoneuron intrinsic excitability and responses to excitatory cholinergic input, both by tyraminehonoka receptor activation and by downstream decrease of L-type calcium current. This central effect of tyramine on motoneurons is required for the adaptive reduction of locomotor activity after feeding. Similarly, peripheral octopamine action on motoneurons has been reported to be required for increasing locomotion upon starvation. We further show that the level of tyramine-ß-hydroxylase (TBH), the enzyme that converts tyramine into octopamine in aminergic neurons, is increased by food deprivation, thus selecting between antagonistic amine actions on motoneurons. Therefore, octopamine and tyramine provide global but distinctly different mechanisms to regulate motoneuron excitability and behavioral plasticity, and their antagonistic actions are balanced within a dynamic range by nutritional effects on TBH.


Assuntos
Oxigenases de Função Mista/genética , Neurônios Motores/metabolismo , Octopamina/genética , Receptores de Amina Biogênica/genética , Tiramina/metabolismo , Animais , Comportamento Animal/fisiologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Privação de Alimentos/fisiologia , Larva/metabolismo , Larva/fisiologia , Locomoção/genética , Locomoção/fisiologia , Oxigenases de Função Mista/metabolismo , Neurônios Motores/fisiologia , Estado Nutricional/genética , Estado Nutricional/fisiologia , Octopamina/metabolismo , Receptores de Amina Biogênica/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA