Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(2): 413-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816143

RESUMO

Chilling injury has a negative impact on the quantity and quality of crops, especially subtropical and tropical plants. The plant cell wall is not only the main source of biomass production, but also the first barrier to various stresses. Therefore, improving the understanding of the alterations in cell wall architecture is of great significance for both biomass production and stress adaptation. Herein, we demonstrated that the cell wall principal component cellulose accumulated during chilling stress, which was caused by the activation of MaCESA proteins. The sequence-multiple comparisons show that a cold-inducible NAC transcriptional factor MaNAC1, a homologue of Secondary Wall NAC transcription factors, has high sequence similarity with Arabidopsis SND3. An increase in cell wall thickness and cellulosic glucan content was observed in MaNAC1-overexpressing Arabidopsis lines, indicating that MaNAC1 participates in cellulose biosynthesis. Over-expression of MaNAC1 in Arabidopsis mutant snd3 restored the defective secondary growth of thinner cell walls and increased cellulosic glucan content. Furthermore, the activation of MaCESA7 and MaCESA6B cellulose biosynthesis genes can be directly induced by MaNAC1 through binding to SNBE motifs within their promoters, leading to enhanced cellulose content during low-temperature stress. Ultimately, tomato fruit showed greater cold resistance in MaNAC1 overexpression lines with thickened cell walls and increased cellulosic glucan content. Our findings revealed that MaNAC1 performs a vital role as a positive modulator in modulating cell wall cellulose metabolism within banana fruit under chilling stress.


Assuntos
Arabidopsis , Musa , Celulose/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Frutas/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
J Sci Food Agric ; 104(14): 8837-8851, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38985128

RESUMO

Blueberries are vulnerable to chilling injury (CI). This can lead to limited longevity when they are subjected to cold storage conditions. This study investigated the effectiveness of a preharvest spray containing 0.02% hexanal in reducing CI and improving the postharvest storage quality of 'Star' and 'Biloxi' blueberries. The blueberries were stored for a period of 5 weeks at 2 °C and in 90% relative humidity (RH). The findings revealed that the preharvest hexanal spraying of both cultivars delayed senescence by mitigating CI, as evidenced by the bolstering of the antioxidant defense system through increased superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and phenylalanine ammonia lyase (PAL) enzyme activity. The treated fruit also maintained elevated levels of total phenol content (TPC), total flavonoids (TFC), and vitamin C, demonstrating enhanced free radical scavenging capacity (FRSC), while exhibiting reduced polyphenoloxidase (PPO) activity, and reduced malondialdehyde (MDA), and H2O2 content in comparison with the control group. The preharvest hexanal treatment also suppressed fruit softening by maintaining greater firmness and higher membrane stability index (MSI) scores, inhibiting the activity of polygalacturonase (PG), pectinmethylesterase (PME), xylanase, and α-amylase, and reducing microbial counts (MC) and incidence of decay (DI) in comparison with the control. Preharvest hexanal treatment also improved the overall storage quality by reducing weight loss, total soluble solids (TSS), pH, and the TSS/acid ratio, while increasing titratable acidity (TA) in comparison with the control during cold storage. The findings suggest that hexanal, as a preharvest application, delays senescence effectively and preserves overall quality by enhancing cold tolerance through antioxidant defense mechanisms in blueberry storage under cold conditions. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Catecol Oxidase , Temperatura Baixa , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Proteínas de Plantas , Superóxido Dismutase , Antioxidantes/metabolismo , Antioxidantes/análise , Mirtilos Azuis (Planta)/química , Mirtilos Azuis (Planta)/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/efeitos dos fármacos , Conservação de Alimentos/métodos , Superóxido Dismutase/metabolismo , Catecol Oxidase/metabolismo , Proteínas de Plantas/metabolismo , Aldeídos/metabolismo , Aldeídos/análise , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Malondialdeído/metabolismo , Poligalacturonase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Conservantes de Alimentos/farmacologia , Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Fenóis/metabolismo , Fenóis/análise
3.
Plant J ; 111(3): 800-818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653257

RESUMO

Bell pepper (Capsicum annuum L.) is a tradable and desirable crop; however, its perishable nature requires low-temperature handling. Paradoxically, cold causes chilling injury (CI) and post-harvest waste. Current knowledge about CI in pepper is limited. The mechanism of CI is multi-faceted; therefore, we focused on fatty acid (FA) desaturation. We identified an upstream nuclear transcription factor (TF), CaMYB340, belonging to the R2R3 MYB subfamily, that negatively regulates FA desaturation and CaCBF3 expression and whose gene and protein expression is induced by low temperature (4°C). Specifically, McrBC treatment and bisulfite sequencing PCR indicate that exposure to cold triggers DNA methylation on one of the CHH sites in the CaMYB340 promoter. This epigenetic event at least partly contributes to the upregulation of CaMYB340 transcript levels. Increased expression of CaMYB340 results in the formation of protein complexes with CabHLH93 and CaMYB1R1, which in turn downregulate the expression of downstream genes. For peppers held at low temperature, transient overexpression of CaMYB340 reduced unsaturated FA content and membrane fluidity, resulting in cold-induced poor peel texture. Transient CaMYB340 silencing increased FA desaturation and lowered electrolyte leakage, enhancing cold tolerance in CaMYB340 knockdown fruits. Overall, these results underscore the intricacy of transcriptional networks in plants and highlight the role of CaMYB340 in CI occurrence in pepper fruits.


Assuntos
Capsicum , Capsicum/metabolismo , Temperatura Baixa , Ácidos Graxos Insaturados/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
BMC Plant Biol ; 23(1): 464, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798697

RESUMO

BACKGROUND: The aim of this study was to compare and investigate the effects of 1-(3-phenyl-propyl) cyclopropene (PPCP) and melatonin (MT) as anti-ethylene agents on postharvest senescence, quality, chilling tolerance, and antioxidant metabolism in the mango fruit cv. "Keitt". The study involved exposing the fruit to 20 µL L- 1 PPCP or 200 µM MT, in addition to a control group of untreated fruit, before storing them at 5 ± 1 °C for 28 d. The findings revealed that the treatments with PPCP and MT were effective in reducing chilling injury and preserving fruit quality when compared to the control group. RESULTS: The use of 20 µL L- 1 PPCP was an effective treatment in terms of mitigating chilling injury and preserving fruit quality for 28 d. This was attributed to the decrease in metabolic activity, specifically the respiration rate and the production of ethylene, which led to the maintenance of fruit firmness and bioactive compounds, energy metabolism, and antioxidant activity, such as ascorbic acid, total flavonoids, trolox equivalent antioxidant capacity, dehydroascorbate reductase, glutathione reductase activity, ATP, and ATPase activity. The study also found that the MT treatment at 200 µM was effective in reducing chilling injury and weight loss and improving membrane stability. Additionally, it led to a decrease in malondialdehyde content and electrolyte leakage, and the maintenance of fruit quality in terms of firmness, peel and pulp colour values for mango peel and pulp total carotenoid content, as well as phenylalanine ammonia lyase and tyrosine ammonia lyase activity. These findings indicate that PPCP and MT have the potential to be efficient treatments in maintaining mango quality and minimizing post-harvest losses. CONCLUSION: The utilisation of treatments with 20 µL L- 1 of PPCP or 200 µM MT was found to effectively preserve the postharvest quality parameters, in terms of bioactive compounds, energy metabolism, and antioxidant activity, of mangoes cv. "Keitt" that were stored at 5 ± 1 °C for 28 d.


Assuntos
Mangifera , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Armazenamento de Alimentos , Frutas/metabolismo , Ciclopropanos/farmacologia
5.
J Exp Biol ; 226(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493046

RESUMO

The insect gut, which plays a role in ion and water balance, has been shown to leak solutes in the cold. Cold stress can also activate insect immune systems, but it is unknown whether the leak of the gut microbiome is a possible immune trigger in the cold. We developed a novel feeding protocol to load the gut of locusts (Locusta migratoria) with fluorescent bacteria before exposing them to -2°C for up to 48 h. No bacteria were recovered from the hemolymph of cold-exposed locusts, regardless of exposure duration. To examine this further, we used an ex vivo gut sac preparation to re-test cold-induced fluorescent FITC-dextran leak across the gut and found no increased rate of leak. These results question not only the validity of FITC-dextran as a marker of paracellular barrier permeability in the gut, but also to what extent the insect gut becomes leaky in the cold.


Assuntos
Dextranos , Locusta migratoria , Animais , Locusta migratoria/fisiologia , Resposta ao Choque Frio , Fluoresceína-5-Isotiocianato , Temperatura Baixa
6.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702765

RESUMO

Chilling injury is one of the most significant limitations for low temperature storage of postharvest fruits and vegetables, causing quality deterioration and economic loss. Increasing studies indicated that methyl jasmonate (MeJA) is critical in regulating the postharvest fruit and vegetables chilling tolerance. Based on a meta-analysis, the review analyzed the action of exogenous MeJA application on the chilling index in postharvest fruit and vegetables and summarized MeJA's mechanisms for controlling postharvest chilling injury. The meta-analysis found that MeJA treatment remarkably inhibited postharvest fruit and vegetable chilling injury. Moreover, we concluded the following function mechanism of MeJA on postharvest fruit and vegetable chilling tolerance: (1) Enhancing membrane integrity and energy supply, (2) Increasing antioxidant activity, (3) Enhancing arginine pathway, (4) Enhancing sugar metabolism, (5) Regulating phenolic metabolism, (6) Activating CBF pathway, (7) Regulating HSP accumulation and expression, and (8) Crosstalk with phytohormone. Finally, we summarized the regulatory mechanisms of MeJA on postharvest fruit and vegetable biological processes at the transcriptional and post-translational levels.

7.
Mol Biol Rep ; 50(1): 361-376, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334232

RESUMO

BACKGROUND: Peach (Prunus persica L.) is prone to chilling injury as exhibited by inhibition of the ethylene production, failure in softening, and the manifestation of internal browning. The basic leucine zipper (bZIP) transcription factors play an essential role in regulatory networks that control many processes associated with physiological, abiotic and biotic stress responses in fruits. Formerly, the underlying molecular and regulatory mechanism of (bZIP) transcription factors responsive to chilling injury in peach fruit is still elusive. METHODS AND RESULTS: In the current experiment, the solute peach 'Zhongyou Peach No. 13' was used as the test material and cold storage at low temperature (4 °C). It was found that long-term low-temperature storage induced the production of ethylene, the hardness of the pulp decreased, and the low temperature also induced ABA accumulation. The changes of ABA and ethylene in peach fruits during low-temperature storage were clarified. Since the bZIP transcription factor is involved in the regulation of downstream pathways of ABA signals, 47 peach bZIP transcription factor family genes were identified through bioinformatics analysis. Further based on RT-qPCR analysis, 18 PpbZIP genes were discovered to be expressed in refrigerated peach fruits. Among them, the expression of PpbZIP23 and PpbZIP25 was significantly reduced during the refrigeration process, the promoter analysis of these genes found that this region contains the MYC/MYB/ABRES binding element, but not the DRES/CBFS element, indicating that the expression may be regulated by the ABA-dependent cold induction pathway, thereby responding to chilling injury in peach fruit. CONCLUSIONS: Over investigation will provide new insights for further postharvest protocols related to molecular changes during cold storage and will prove a better cope for chilling injury.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Frutas/metabolismo , Zíper de Leucina , Etilenos/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas/genética
8.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762201

RESUMO

Postharvest abnormal chilling injury (CI) behavior in papaya (Carica papaya L.) fruit is a rare phenomenon that may be associated with respiratory metabolism. This study thus aimed to investigate the impacts of storage temperatures (1 and 6 °C) on the respiratory metabolism of postharvest papaya and its impact on CI development. Results demonstrated that 1 °C storage reduced the activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), and α-ketoglutarate dehydrogenase (α-KGDH) and regulated the expression of corresponding enzymes in the Embden-Meyerhof-Parnas (EMP) pathway and tricarboxylic acid (TCA) cycle compared with 6 °C storage, resulting in a lower respiration rate of the EMP-TCA pathway and mitigating the development of CI. Meanwhile, lower contents of nicotinamide adenine dinucleotide (hydrogen) (NAD(H)) were observed in papaya fruit stored at 1 °C. Notably, papaya fruit stored at 1 °C maintained higher activity and transcriptional levels of SDH and IDH during the whole storage period. These findings suggest that 1 °C storage reduced the respiration rate of the EMP-TCA pathway by reducing the expression level and activity of related enzymes, which is conducive to the reduction of respiration substrate consumption and finally alleviating the occurrence of CI.

9.
Food Technol Biotechnol ; 61(3): 283-293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38022876

RESUMO

Research background: Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (Phaseolus vulgaris L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system. Experimental approach: Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined. Results and conclusions: 1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean. Novelty and scientific contribution: This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.

10.
J Sci Food Agric ; 103(5): 2675-2680, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36229969

RESUMO

BACKGROUND: Kiwifruit is prone to chilling stress and displays chilling injury (CI) such as lignification; however, the underlying physicochemical mechanism remains largely unknown. Here, the changes in levels of quality attributes, lignin biosynthesis, antioxidant system and sugars were compared in kiwifruit between control and hydrogen-rich water (HRW) treatments during cold storage for 90 days at 0 °C. RESULTS: The results reveal that HRW is an effective measure for CI alleviation, as indicated by the decrease in lignification level with repressed peroxidase activity but enhanced polyphenol oxidase activity. The amelioration of membrane peroxidation was suggested by the repressed levels of H2 O2 and malondialdehyde. They were accompanied by the improvement of antioxidant system, which is supported by the enhancement of sugars including fructose and glucose. CONCLUSION: In conclusion, HRW can enhance chilling tolerance, as suggested by the alleviation of lignification through inhibiting peroxidase activity and elevating the antioxidant system to attenuate membrane peroxidation. © 2022 Society of Chemical Industry.


Assuntos
Antioxidantes , Peroxidases , Malondialdeído , Hidrogênio/farmacologia , Água , Temperatura Baixa
11.
J Sci Food Agric ; 103(9): 4573-4583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36960654

RESUMO

BACKGROUND: Accurate and timely access to large-scale crop damage information provides an essential reference for responding to agricultural disaster prevention and mitigation needs and ensuring food production security. The present study aimed to reveal the new characteristics of low-temperature cold damage to maize in the context of climate warming. Heilongjiang, one of the provinces with the highest latitude, the most significant climate change and the largest maize production in China, was taken as the study area. We combined meteorological stations and MODIS remote sensing data to spatially identify the occurrence and intensity of cold damage to maize based on the growing season temperature distance level index, as well as to assess the extent of cold damage. RESULTS: The main findings are: (i) The frequency and intensity range of cold damage in the growing season (May to September) in Heilongjiang Province from 1991 to 2020 against climate warming showed a decreasing trend. The average temperature from 1991 to 2000 was 17.777 °C, with seven occurrences of maize cold damage years, of which 5 years comprised widespread cold damage and 2 years comprised regional cold damage. The average temperature from 2000 to 2010 was 18.137 °C, with cold damage three times, of which 2 years comprised regional cold damage and 1 year comprised widespread cold damage. The average temperature from 2010 to 2020 was 18.130 °C, with one maize cold damage year occurring, which comprised regional cold damage. The frequency of maize chilling injury decreased significantly from 1991 to 2020, from 0.23 in 1991-2000 to 0.1 in 2000-2010 and, finally, to 0.03 in 2010-2020. (ii) The good consistency between MODIS_LST data and temperature data from meteorological stations suggests that MODIS_LST data can be used to build a temperature remote sensing estimation model for spatially extensive cold damage monitoring and intensity discrimination. (iii) Taking 2009 as an example of a large-scale cold damage year, the spatial discrimination of maize cold damage intensity shows that the spatial distribution of chilling injury intensity has no obvious geographical features. The intensity of cold damage was mainly mild cold damage. According to administrative regions, the scope of chilling injury was the largest in Mudanjiang City, Heihe City, and Jixi City, accounting for 91.56%, 86.25%, and 84.91%, respectively. The areas with the most extensive range of severe chilling injuries were the Great Khingan Mountains region, Heihe City, Mudanjiang City, Yichun City, and Jixi City. CONCLUSION: In the context of climate warming, the frequency and intensity range of maize cold damage showed a decreasing trend from 1991 to 2020 in Heilongjiang Province. The results of cold damage identification based on MODIS_LST data are accurate and can improve the spatial accuracy. The results of the present study provide a reference and guidance for dealing with the occurrence and defence of spatially refined cold damage. © 2023 Society of Chemical Industry.


Assuntos
Temperatura Baixa , Zea mays , Temperatura , Mudança Climática , Estações do Ano , China
12.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806145

RESUMO

Controlled atmosphere (CA) has been used to alleviate chilling injury (CI) of horticultural crops caused by cold storage. However, the effects of CA treatment on peach fruit sensory quality and flavor-related chemicals suffering from CI remain largely unknown. Here, we stored peach fruit under CA with 5% O2 and 10% CO2 at 0 °C up to 28 d followed by a subsequent 3 d shelf-life at 20 °C (28S3). CA significantly reduced flesh browning and improved sensory quality at 28S3. Though total volatiles declined during extended cold storage, CA accumulated higher content of volatile esters and lactones than control at 28S3. A total of 14 volatiles were positively correlated with consumer acceptability, mainly including three C6 compounds, three esters and four lactones derived from the fatty acid lipoxygenase (LOX) pathway. Correspondingly, the expression levels of genes including PpLOX1, hyperoxide lyase PpHPL1 and alcohol acyltransferase PpAAT1 were positively correlated with the change of esters and lactones. CA elevated the sucrose content and the degree of fatty acids unsaturation under cold storage, which gave us clues to clarify the mechanism of resistance to cold stress. The results suggested that CA treatment improved sensory quality by alleviating CI of peach fruits under cold storage.


Assuntos
Prunus persica , Atmosfera , Temperatura Baixa , Ésteres/metabolismo , Armazenamento de Alimentos , Frutas/metabolismo , Expressão Gênica , Lactonas/metabolismo , Prunus persica/metabolismo
13.
J Sci Food Agric ; 102(8): 3350-3358, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34820839

RESUMO

BACKGROUND: Vegetable grafting has been increasingly evaluated to improve preharvest tolerance to biotic and abiotic stresses. However, very few studies have identified rootstock-scion combinations able to improve fruit shelf life and reduce the susceptibility to postharvest disorders. Herein, a purple eggplant scion (cv. Monarca) was grafted onto a cold-tolerant hybrid Solanum rootstock ('Java') and the changes in growth, quality, postharvest chilling tolerance, and antioxidant stability were evaluated. RESULTS: Eggplant grafting enhanced plant vigor and fruit growth rate, decreasing the time from set to harvest by 10-15%. Grafted eggplants had a thinner shape and lighter pulp color than the control. The rootstock-scion combination tested showed lower respiration (~60%), dry matter (~15-20%), and phenolic compounds contents (~15-20%) than eggplants from non-grafted plants. Grafting markedly improved fruit performance during postharvest storage. Remarkably, grafted eggplants showed much higher tolerance to chilling injury than the control did, evidenced by a reduction of surface scalds along with decreased softening and pulp browning. The trend in antioxidants found at harvest time was reversed after cold storage due to enhanced stability (20% and 100% for pulp and peel respectively) in fruit from grafted plants. CONCLUSION: Purple eggplant (cv. Monarca) grafting onto 'Java' hybrid rootstock modulated fruit growth, quality at harvest, and increased fruit chilling injury tolerance during storage. Grafting may be a bona fide strategy to induce phenotypic traits able to improve vegetable postharvest performance. © 2021 Society of Chemical Industry.


Assuntos
Solanum melongena , Antioxidantes/química , Frutas/química , Fenóis/análise
14.
J Sci Food Agric ; 102(2): 531-539, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34143503

RESUMO

BACKGROUND: Chilling injury (CI) is a physiological disorder that results in a limitation for cold storage (CS) of many fruits and vegetables. The low temperature-induced changes in the properties and composition of cell membranes are involved in the response to chilling temperature and in the mechanism of CI and tolerance. RESULTS: We compared the changes in the lipid composition by gas chromatography-mass spectrometry before, immediately after CS, as well as during a 3-day subsequent period, of tomato fruits with different chilling-sensitivity: Micro-Tom (tolerant) and Minitomato (susceptible). The changes in linolenic acid content, double bond index and digalactosyldiacylglycerol/monogalactosyldiacylglycerol ratio (DGDG/MGDG) showed membrane fluidity adjustment, depending on the temperature. By a database search, we identified 18 membrane-bound fatty acid desaturase (FAD) genes and five DGDG synthases (DGD) genes that phylogenetically clustered into four and two subfamilies, respectively. The FAD and DGD genes were differentially expressed in response to CS, as determined by quantitative reverse transcriptase-polymerase chain reaction analysis. CONCLUSION: The data strongly suggest that reversion of CS-induced changes during the recovery period is important for the proper function of the membrane and tolerance to postharvest CI in tomato fruit. © 2021 Society of Chemical Industry.


Assuntos
Frutas/química , Galactolipídeos/química , Solanum lycopersicum/química , Temperatura Baixa , Manipulação de Alimentos , Armazenamento de Alimentos , Cromatografia Gasosa-Espectrometria de Massas
15.
J Sci Food Agric ; 102(2): 628-643, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146341

RESUMO

BACKGROUND: Heat shock transcription factors (Hsfs) play pivotal roles in plant responses to stress. Although glycine betaine (GB) and hot water (HW) treatments are effective in reducing chilling injury (CI), little is known about the characterization of the Hsfs gene family and its potential roles in alleviating CI by regulating antioxidant systems in peach fruit. RESULTS: In this study, 17 PpHsfs were identified in the peach genome and were investigated using bioinformatics, including chromosomal locations, phylogenetic relationships, gene structure, motifs, and promoter analyses. The expression patterns of PpHsfs under GB and HW treatments were also investigated. The PpHsfs showed different expression patterns in GB- and HW-treated fruit, and most of them were significantly up-regulated by both treatments, especially PpHsfA1a/b, PpHsfA2a, PpHsfA9a, and PpHsfB2a/b. Meanwhile, GB and HW treatments induced higher levels of gene expression and antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) compared to the control, contributing to the inhibition of hydrogen peroxide (H2 O2 ) accumulation and superoxide anion (O2 .- ) production. Moreover, the correlation analysis between PpHsfs and antioxidant-related genes showed that three PpAPXs were significantly correlated with ten PpHsfs, whereas PpCAT and PpSOD had no significant correlations with PpHsfs, which indicated that PpAPX might be regulated by PpHsfs. CONCLUSIONS: The results indicated that GB and HW treatments induced different PpHsfs transcript levels to regulate the antioxidant gene expressions, which might be beneficial in inhibiting the accumulation of reactive oxygen species and protecting the integrity of cell structure, thus alleviating the development of CI in peach fruit during cold storage. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Betaína/farmacologia , Genoma de Planta , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Prunus persica/efeitos dos fármacos , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Catalase/genética , Catalase/metabolismo , Armazenamento de Alimentos , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/metabolismo , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
16.
Compr Rev Food Sci Food Saf ; 21(5): 4251-4273, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876655

RESUMO

Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.


Assuntos
Frutas , Verduras , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Frutas/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
17.
J Food Sci Technol ; 59(10): 3938-3950, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36193378

RESUMO

The present study aimed to characterize the phenotypic diversity of agronomical and biochemical fruit quality traits in four early peach cultivars. The sensibility to chilling injury symptoms (CI) was studied after two cold storage periods (2 and 4 weeks) at 5 ºC and 95% relative humidity (RH) followed by 2 days at room temperature. Agronomical attributes such as fruit weight, firmness, soluble solids content (SSC), pH, titratable acidity (TA) and color parameters were recorded. Antioxidant compounds such as anthocyanins, flavonoids, total phenolics, vitamin C and relative antioxidant capacity (RAC) were evaluated. Chilling injury symptoms such as mealiness, graininess, flesh browning, flesh bleeding, leatheriness and off-flavor were analyzed. Results revealed high antioxidant compounds in peel regarding to flesh fruit. The antioxidant compounds content in both peel and pulp decreased during cold storage except anthocyanins which exhibited different pattern. After 2 weeks of storage, fruits presented high SSC and low score of chilling injury symptoms. At the end of the trial, the studied cultivars were unacceptable for consumption due to the severity of CI. PCA analysis showed that the cultivars Plagold 5 and Plagold 10 had less sensibility to chilling injury.

18.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467390

RESUMO

Citrus fruit are sensitive to chilling injury (CI) during cold storage, a peel disorder that causes economic losses. C-repeat binding factors (CBFs) are related to cold acclimation and tolerance in different plants. To explore the role of Citrus CBFs in fruit response to cold, an in silico study was performed, revealing three genes (CBF1, CBF2, and CBF3) whose expression in CI sensitive and tolerant cultivars was followed. Major changes occurred at the early stages of cold exposure (1-5 d). Interestingly, CBF1 was the most stimulated gene in the peel of CI-tolerant cultivars (Lisbon lemon, Star Ruby grapefruit, and Navelina orange), remaining unaltered in sensitive cultivars (Meyer lemon, Marsh grapefruit, and Salustiana orange). Results suggest a positive association of CBF1 expression with cold tolerance in Citrus cultivars (except for mandarins), whereas the expression of CBF2 or CBF3 genes did not reveal a clear relationship with the susceptibility to CI. Light avoidance during fruit growth reduced postharvest CI in most sensitive cultivars, associated with a rapid and transient enhance in the expression of the three CBFs. Results suggest that CBFs-dependent pathways mediate at least part of the cold tolerance responses in sensitive Citrus, indicating that CBF1 participates in the natural tolerance to CI.


Assuntos
Citrus/genética , Temperatura Baixa , Armazenamento de Alimentos/métodos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Adaptação Fisiológica/genética , Citrus/classificação , Citrus paradisi/genética , Citrus sinensis/genética , Isoformas de Proteínas/genética , Especificidade da Espécie
19.
J Sci Food Agric ; 101(1): 54-64, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949019

RESUMO

BACKGROUND: Reducing the negative effects of chilling injury (CI) in tomatoes after harvest is essential to ensure good quality and to minimize losses. CI is a postharvest disorder associated with the generation of reactive oxygen species (ROS) in the fruit. Therefore, antioxidant accumulation can counteract ROS, alleviating CI symptoms. In this sense, it has been confirmed that a brief hot-water (HW) immersion promotes the synthesis of antioxidants. RESULTS: HW treatment at 52 °C for 5 min significantly reduced chilling-associated decay, from 66.7% to 17.2% in breaker turning (BT) and from 55.8% to 9.8% in mature green (MG) 'BHN-602' tomatoes stored at 5 °C for 2 weeks and from 26.7% to 6.7% in BT tomatoes stored at 5 °C for 1 week. Also, HW treatment significantly increased lycopene content by 17% in BT tomatoes stored at 5 °C for 2 weeks, as well as ascorbic acid by 11%, lipophilic phenolics by 18% and total phenolics by 6.5% in BT tomatoes stored at 12.5 °C for 1 week. Despite the increase of antioxidants, HW treatment did not enhance the sensory aromatic profile, color and antioxidant capacity. Interestingly, HW treatment reduced ripening time by 3 days in MG tomatoes stored at 5 °C for 2 weeks or at 12.5 °C for 1 week. CONCLUSION: HW treatment applied to MG or BT 'BHN-602' tomatoes can alleviate the development of some CI symptoms, particularly decay, possibly by increasing antioxidants that scavenge ROS. © 2020 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Solanum lycopersicum/química , Água/química , Antioxidantes/análise , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Temperatura Baixa , Armazenamento de Alimentos , Frutas/química , Frutas/metabolismo , Solanum lycopersicum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
J Sci Food Agric ; 101(3): 1161-1166, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32785943

RESUMO

BACKGROUND: Tree-ripe mangoes are of a better quality than the more commonly marketed mature-green fruit. However, the postharvest life of tree-ripe mangoes at the chilling threshold temperature for mature-green fruit of 12 °C is insufficient to allow long distance transport for international marketing. Because the chilling sensitivity often decreases as fruit ripen, lower temperatures (5 and 8 °C) in combination with a controlled atmosphere of 5 kPa O2 plus 10 or 25 kPa CO2 were tested to determine whether the quality of tree-ripe mangoes could be maintained longer without chilling injury (CI). RESULTS: Tree-ripe 'Tommy Atkins' and 'Keitt' mangoes were stored for 14 or 21 days, respectively, in air or controlled atmosphere (CA) at 5 or 8 °C. Respiration rates were below 10 mL kg-1 h-1 during CA storage and increased three-fold during a 3-day shelf life period at 20 °C. Ethanol synthesis of fruit stored in 25 kPa CO2 , but not 10 kPa CO2 , increased during storage and remained high during shelf life, indicating physiological stress. Elevated electrolyte leakage and 1-aminocyclopropane-1-carboxylic acid concentrations in both cultivars stored in 25 kPa CO2 also indicated that mesocarp tissues were injured by the higher CO2 level. No CI symptoms were observed in air or CA at either 5 or 8 °C. CONCLUSION: Storage of tree-ripe mangoes in 5 kPa O2 plus 10 kPa CO2 at either 5 or 8 °C best maintained the quality of Tommy Atkins and Keitt fruit for 14 or 21 days, respectively, without evidence of either atmosphere injury or CI. © 2020 Society of Chemical Industry.


Assuntos
Dióxido de Carbono/análise , Armazenamento de Alimentos/métodos , Mangifera/química , Armazenamento de Alimentos/instrumentação , Frutas/química , Controle de Qualidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA