RESUMO
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Bacillus subtilis , Proteínas de Bactérias , Proteínas de Transporte , Nucleotídeos , Trifosfato de Adenosina/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cisteína/química , Cisteína/genética , Transporte BiológicoRESUMO
Drug safety is a paramount concern in the field of drug development, with researchers increasingly focusing on the bidirectional regulation of gut microbiota in this context. The gut microbiota plays a crucial role in maintaining drug safety. It can influence drug transport processes in the body through various mechanisms, thereby modulating their efficacy and toxicity. The main mechanisms include: (1) The gut microbiota directly interacts with drugs, altering their chemical structure to reduce toxicity and enhance efficacy, thereby impacting drug transport mechanisms, drugs can also change the structure and abundance of gut bacteria; (2) bidirectional regulation of intestinal barrier permeability by gut microbiota, promoting the absorption of nontoxic drugs and inhibiting the absorption of toxic components; (3) bidirectional regulation of the expression and activity of transport proteins by gut microbiota, selectively promoting the absorption of effective components or inhibiting the absorption of toxic components. This bidirectional regulatory role enables the gut microbiota to play a key role in maintaining drug balance in the body and reducing adverse reactions. Understanding these regulatory mechanisms sheds light on novel approaches to minimize toxic side effects, enhance drug efficacy, and ultimately improve drug safety. This review systematically examines the bidirectional regulation of gut microbiota in drug transportation from the aforementioned aspects, emphasizing their significance in ensuring drug safety. Furthermore, it offers a prospective outlook from the standpoint of enhancing therapeutic efficacy and reducing drug toxicity, underscoring the importance of further exploration in this research domain. It aims to provide more effective strategies for drug development and treatment.
RESUMO
Several clinical studies have shown that COVID-19 increases the systemic concentration of drugs in hospitalized COVID-19 patients. However, it is unclear how COVID-19-mediated bidirectional dysregulation of hepatic and pulmonary CYP3A4 impacts drug concentrations, especially in the lung tissue which is most affected by the disease. Herein, PBPK modeling was used to demonstrate the differences in systemic and pulmonary concentrations of four respiratory infectious disease drugs when CYP3A4 is concurrently downregulated in the liver and upregulated in the lung based on existing clinical data on COVID-19 - CYP3A4 interactions at varying severity levels including outpatients, non-ICU, and ICU patients. The study showed that hepatic metabolism is the primary determinant of both systemic and pulmonary drug concentrations despite the concurrent bidirectional dysregulation of liver and lung CYP3A4. ICU patients had the most systemic and pulmonary drug exposure with a percentage increase in AUCplasma of approximately 44%, 56%, 114%, and 196% for clarithromycin, nirmatrelvir, dexamethasone, and itraconazole, respectively, relative to the healthy group. Within the ICU cohort, clarithromycin exhibited its highest exposure in lung tissue mass with a fold change of 1189, while nirmatrelvir and dexamethasone showed their highest exposure in the plasma compartment, with fold changes of about 126 and 5, respectively, compared to the maximum therapeutic concentrations for their target pathogens. Itraconazole was significantly under-exposed in the lung fluid compartment potentially explaining its limited efficacy for the treatment of COVID-19. These findings underscore the importance of optimizing dosing regimens in at risk ICU patients to enhance both efficacy and safety profiles. Significance Statement This study investigated whether COVID-19-mediated concurrent hepatic downregulation and pulmonary upregulation of CYP3A4 leads to differences in the systemic and pulmonary concentrations of four respiratory medicines. The study demonstrated that intercompartmental differences in drug concentrations were driven by only hepatic CYP3A4 expression. This work suggests that ICU patients with significant COVID-19 - CYP3A4 interactions may be at risk of clinically relevant COVID-19-drug interactions, highlighting the need for optimizing dosing regimens in this patient group to improve safety and efficacy.
RESUMO
ATP-binding cassette (ABC) transporters, the important transmembrane efflux transporters, play an irreplaceable role in the placenta barrier. The disposition and drug-drug interaction of clinical drugs are also closely related to the functions of ABC transporters. The trophoblast is a unique feature of the placenta, which is crucial for normal placentation and maintenance during pregnancy. ABC transporters are abundantly expressed in placental syncytiotrophoblast, especially P-gp, BCRP, and MRPs. However, due to the lack of appropriate modeling systems, the molecular mechanisms of regulation between ABC transporters and trophoblast remains unclear. In this report, trophoblast organoids were cultured from human placental villi and developed into three-dimension structures with cavities. Trophoblast organoids exhibited transporter expression and localization comparable to that in villous tissue, indicating their physiological relevance for modeling drug transport. Moreover, fluorescent substrates can accumulate in organoids and be selectively inhibited by inhibitors, indicating the efflux function of ABC transporters (P-gp, BCRP, MRP1, and MRP2) in organoids. Two commonly used hypertension drugs and three antipsychotics were chosen to further validate this drug transport model and demonstrate varying degrees of inhibitory effects on ABC transporters. Overall, a new drug transport model mediated by ABC transporter has been successfully established based on human trophoblast organoids, which can be used to study drug transport in the placenta.
RESUMO
PURPOSE: This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS: A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS: PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION: A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.
Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Midazolam/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Biológicos , Derivados da MorfinaRESUMO
It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.
Assuntos
Eliminação Hepatobiliar , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatócitos/metabolismo , RNA Mensageiro/metabolismoRESUMO
P-glycoprotein (P-gp), a multidrug efflux pump encoded by the ABCB1 (formerly MDR1) gene, plays a crucial role in limiting drug absorption and eliminating toxic compounds in both humans and dogs. However, species-specific differences in P-gp substrates necessitate the development of canine-specific evaluation systems. Canine intestinal organoids derived monolayers offer a promising platform for studying drug transport, yet P-gp-mediated transport in these models remains unexplored.We generated canine colonoid-derived 2D monolayers to investigate ABCB1 gene expression and P-gp function. We employed widely recognised P-gp substrates, Rhodamine 123 and Doxorubicin, in conjunction with the P-gp inhibitor PSC833 at Days 5 and 10 of culture.A significant increase in gene expression of P-gp encoded by the ABCB1 was noted on Day 10 compared to Day 5 of culture. Despite this disparity in gene expression, the transport activity of P-gp, as assessed by the efflux of Rhodamine 123 and Doxorubicin with PSC833 inhibition, did not exhibit significant differences between these two time points. However, the inhibition of P-gp function by PSC833 confirms the presence of functional P-gp in our model.Canine intestinal organoid-derived monolayers provide a valuable tool for investigating P-gp-mediated drug transport. These findings highlight the potential for predicting drug bioavailability and adverse reactions in veterinary medicine, aligning with principles of ethical and sustainable research.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Doxorrubicina , Organoides , Rodamina 123 , Animais , Cães , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Rodamina 123/metabolismo , Organoides/metabolismo , Doxorrubicina/farmacologia , Mucosa Intestinal/metabolismo , Ciclosporinas/farmacologia , Transporte BiológicoRESUMO
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Fluoruracila , Compostos Fitoquímicos , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Vesículas Extracelulares/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , AnimaisRESUMO
As the medium for intravitreal drug delivery, the vitreous body can significantly influence drug delivery because of various possible liquefaction geometries. This work innovatively proposes a varying-porosity approach that is capable of solving the pressure and velocity fields in the heterogeneous vitreous with randomly-shaped liquefaction geometry, validated with a finite difference model. Doing so enables patient-specific treatment for intravitreal drug delivery and can significantly improve treatment efficacy. A physics-informed neural network (PINN) model is also established for the simulation, and three cases are used for validation. Despite limited information, the PINN model, together with the varying-porosity approach, captured fluid and drug transport in the partially liquefied vitreous. This opens the possibility for optimizing intravitreal drug delivery based on ultrasonography in clinical practice.
RESUMO
Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the ß2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human-mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar ß2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure-function data of OCT1 is not directly transferrable between substrates or species.
Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/química , Transportador 1 de Cátions Orgânicos , Sequência de Aminoácidos , Animais , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Fenoterol , Células HEK293 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismoRESUMO
The blood-brain barrier is essential for maintaining the stability of the central nervous system and is also crucial for regulating drug metabolism, changes of blood-brain barrier's structure and function can influence how drugs are delivered to the brain. In high-altitude hypoxia, the central nervous system's function is drastically altered, which can cause disease and modify the metabolism of drugs in vivo. Changes in the structure and function of the blood-brain barrier and the transport of the drug across the blood-brain barrier under high-altitude hypoxia, are regulated by changes in brain microvascular endothelial cells, astrocytes, and pericytes, either regulated by drug metabolism factors such as drug transporters and drug-metabolizing enzymes. This article aims to review the effects of high-altitude hypoxia on the structure and function of the blood-brain barrier as well as the effects of changes in the blood-brain barrier on drug metabolism. We also hypothesized and explore the regulation and potential mechanisms of the blood-brain barrier and associated pathways, such as transcription factors, inflammatory factors, and nuclear receptors, in regulating drug transport under high-altitude hypoxia.
Assuntos
Doença da Altitude , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Doença da Altitude/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Transporte BiológicoRESUMO
The precise regulation of chiral drug transmembrane transport can be achieved through drug transporters in living organisms. However, implementing this process in vitro is still a formidable challenge due to the complexity of the biological systems that control drug enantiomeric transport. Herein, a facile and feasible strategy is employed to construct chiral L-tyrosine-modified nanochannels (L-Tyr nanochannels) based on polyethylene terephthalate film, which could enhance the chiral recognition of propranolol isomers (R-/S-PPL) for transmembrane transport. Moreover, conventional fluorescence spectroscopy, patch-clamp technology, laser scanning confocal microscopy, and picoammeter technology are employed to evaluate the performance of nanochannels. The results show that the L-Tyr nanochannel have better chiral selectivity for R-/S-PPL compared with the L-tryptophan (L-Trp) channel, and the chiral selectivity coefficient is improved by about 4.21-fold. Finally, a detailed theoretical analysis of the chirality selectivity mechanism is carried out. The findings would not only enrich the basic theory research related to chiral drug transmembrane transport, but also provide a new idea for constructing artificial channels to separate chiral drugs.
Assuntos
Triptofano , Transporte Biológico , EstereoisomerismoRESUMO
Our recent study revealed that SLC49A4, known as disrupted in renal carcinoma 2, is a H+-coupled lysosomal exporter for pyridoxine (vitamin B6), a cationic compound, and involved in the regulation of its lysosomal and cellular levels. We here examined a possibility that this transporter might also transport cationic amphiphilic drugs (CADs) that are known to undergo lysosomal trapping, using pyrilamine, an H1-antagonist, as a model CAD and the COS-7 cell line as a model cell system for transient introduction of human SLC49A4 and a recombinant SLC49A4 protein (SLC49A4-AA), in which the N-terminal dileucine motif involved in lysosomal localization was removed by replacing with dialanine for redirected localization to the plasma membrane. The introduction of SLC49A4 into COS-7 cells induced a significant decrease in the accumulation of pyrilamine in the intracellular compartments in the cells treated with digitonin for permeabilization of plasma membranes, suggesting its operation for lysosomal pyrilamine export. Accordingly, functional analysis using the SLC49A4-AA mutant, which operates for cellular uptake at the plasma membrane, in transiently transfected COS-7 cells demonstrated its H+-coupled operation for pyrilamine transport, which was saturable with a Michaelis constant of 132 µM at pH 5.5. In addition, many CADs that may potentially undergo lysosomal trapping, which include imipramine, propranolol, verapamil, and some others, were found to inhibit SLC49A4-AA-mediated pyrilamine transport, suggesting their affinity for SLC49A4. These results suggest that SLC49A4 is involved in the lysosomal trapping of pyrilamine, operating for its exit. The CADs that inhibited SLC49A4-AA-mediated pyrilamine transport could also be SLC49A4 substrate candidates. Significance Statement SLC49A4 mediates the transport of pyrilamine in a H+-coupled manner at the lysosomal membrane. This could be a newly identified mechanism for lysosomal export involved in its lysosomal trapping.
RESUMO
Rats are extensively used as a preclinical model for assessing drug pharmacokinetics (PK) and tissue distribution; however, successful translation of the rat data requires information on the differences in drug metabolism and transport mechanisms between rats and humans. To partly fill this knowledge gap, we quantified clinically relevant drug-metabolizing enzymes and transporters (DMETs) in the liver and different intestinal segments of Sprague-Dawley rats. The levels of DMET proteins in rats were quantified using the global proteomics-based total protein approach (TPA) and targeted proteomics. The abundance of the major DMET proteins was largely comparable using quantitative global and targeted proteomics. However, global proteomics-based TPA was able to detect and quantify a comprehensive list of 66 DMET proteins in the liver and 37 DMET proteins in the intestinal segments of SD rats without the need for peptide standards. Cytochrome P450 (Cyp) and UDP-glycosyltransferase (Ugt) enzymes were mainly detected in the liver with the abundance ranging from 8 to 6502 and 74 to 2558 pmol/g tissue. P-gp abundance was higher in the intestine (124.1 pmol/g) as compared to that in the liver (26.6 pmol/g) using the targeted analysis. Breast cancer resistance protein (Bcrp) was most abundant in the intestinal segments, whereas organic anion transporting polypeptides (Oatp) 1a1, 1a4, 1b2, and 2a1 and multidrug resistance proteins (Mrp) 2 and 6 were predominantly detected in the liver. To demonstrate the utility of these data, we modeled digoxin PK by integrating protein abundance of P-gp and Cyp3a2 into a physiologically based PK (PBPK) model constructed using PK-Sim software. The model was able to reliably predict the systemic as well as tissue concentrations of digoxin in rats. These findings suggest that proteomics-informed PBPK models in preclinical species can allow mechanistic PK predictions in animal models including tissue drug concentrations.
Assuntos
Proteínas de Membrana Transportadoras , Proteínas de Neoplasias , Humanos , Ratos , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ratos Sprague-Dawley , Proteínas de Neoplasias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fígado/metabolismo , Intestinos , Digoxina/metabolismoRESUMO
Solute carrier (SLC) transport proteins are fundamental for the translocation of endogenous compounds and drugs across membranes, thus playing a critical role in disease susceptibility and drug response. Because only a limited number of transporter substrates are currently known, the function of a large number of SLC transporters is elusive. Here, we describe the proof-of-concept of a novel strategy to identify SLC transporter substrates exemplarily for the proton-coupled peptide transporter (PEPT) 2 (SLC15A2) and multidrug and toxin extrusion (MATE) 1 transporter (SLC47A1), which are important renal transporters of drug reabsorption and excretion, respectively. By combining metabolomic profiling of mice with genetically-disrupted transporters, in silico ligand screening and in vitro transport studies for experimental validation, we identified nucleobases and nucleoside-derived anticancer and antiviral agents (flucytosine, cytarabine, gemcitabine, capecitabine) as novel drug substrates of the MATE1 transporter. Our data confirms the successful applicability of this new approach for the identification of transporter substrates in general, which may prove particularly relevant in drug research.
Assuntos
Proteínas de Membrana Transportadoras , Proteínas Carreadoras de Solutos , Animais , Camundongos , Ligantes , Transporte BiológicoRESUMO
PURPOSE: The brain is protected from circulating metabolites and xenobiotics by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Previous studies report that P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) are expressed apically or subapically at the blood-CSF barrier (BCSFB), implying a paradoxical function to mediate blood-to-CSF transport of xenobiotics. As evidence of P-gp and Bcrp activity at the BCSFB is limited, the goal of this study is to investigate functional activity of P-gp and Bcrp at the murine BCSFB using a live tissue imaging approach. METHODS: The choroid plexuses (CP) forming the BCSFB were freshly isolated from mouse brain ventricles and incubated with fluorescent probes calcein-AM and BODIPY FL-Prazosin. Using quantitative fluorescence microscopy, the functional contributions of Bcrp and P-gp were examined using inhibitors and mice with targeted deletion of the Abcb1a/b or Abcg2 gene. RESULTS: Apical transport of calcein-AM in choroid plexus epithelial (CPE) cells is sensitive to inhibition by elacridar and Ko143 but is unaffected by P-gp deletion. In wild-type mice, elacridar increased CPE accumulation of BODIPY FL-Prazosin by 220% whereas deletion of Bcrp increased BODIPY FL-Prazosin accumulation by 43%. There was no change in Mdr1a/1b mRNA expression in CP tissues from the Bcrp-/- mice. CONCLUSIONS: This study demonstrated functional activity of Bcrp at the BCSFB apical membrane and provided evidence supporting an additional contribution by P-gp. These findings contribute to the understanding of transport mechanisms that regulate CSF drug concentrations, which may benefit future predictions of CNS drug disposition, efficacy, and toxicity.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Animais , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , PrazosinaRESUMO
Electroporation has emerged as a suitable technique to induce the pore formation in the cell membrane of cancer tissues, facilitating the cellular internalization of chemotherapeutic drugs. An adequate selection of the electric pulse characteristics is crucial to guarantee the efficiency of this technique, minimizing the adverse effects. In the present work, the dual reciprocity boundary element method (DR-BEM) is applied for the simulation of drug transport in the extracellular and intracellular space of cancer tissues subjected to the application of controlled electric pulses, using a continuum tumour cord approach, and considering both the electro-permeabilization and vasoconstriction phenomena. The developed DR-BEM algorithm is validated with numerical and experimental results previously published, obtaining a satisfactory accuracy and convergence. Using the DR-BEM code, a study about the influence of the magnitude of electric field (E) and pulse spacing (dpulses) on the time behavior and spatial distribution of the internalized drug, as well as on the cell survival fraction, is carried out. In general, the change of drug concentration, drug exposure and cell survival fraction with the parameters E and dpulses is ruled by two important factors: the balance between the electro-permeabilization and vasoconstriction phenomena, and the relative importance of the sources of cell death (electric pulses and drug cytotoxicity); these two factors, in turn, significantly depend on the reversible and irreversible thresholds considered for the electric field.
Assuntos
Neoplasias , Humanos , Sobrevivência Celular , Neoplasias/tratamento farmacológico , Eletroporação/métodos , Simulação por Computador , Membrana CelularRESUMO
Transgender medicine is a growing clinical field. Hormone therapy (testosterone or estrogen treatment) is part of the standard of gender-affirming medical care, yet clinical pharmacological knowledge in transgender medicine is lacking. Herein, we summarize available clinical and pharmacologic data for hormone therapy among transgender and gender diverse people.
RESUMO
INTRODUCTION: Cisplatin is extensively used in the treatment of head and neck carcinomas. Cetuximab combination therapy is employed in recurrent and metastatic settings. Sunitinib showed positive results in the treatment of head and neck carcinomas, both as monotherapy or in combination with cetuximab. Nonetheless, the mechanism governing these pharmacological interactions is largely unresolved. This study investigates the impact of cetuximab on the cytotoxicity of cisplatin and sunitinib using cells representative of head and neck carcinoma and the oral epithelium. METHODS: The uptake and efflux activities of cells were determined using the prototypical fluorescent substrates 4-[4-[dimethylamino]styryl)-1-methyl pyridinium iodide, Hoechst 33342, and calcein-AM in the presence or absence of specific inhibitors in cells pretreated with cetuximab. The expression of key uptake and efflux drug transporters was analyzed using qPCR and immunofluorescence. Cisplatin and sunitinib cytotoxicities after cetuximab pretreatment were evaluated using the PrestoBlue viability assay. RESULTS: Both tumor and nontumor cells showed significant active drug transport activity. Cetuximab substantially deregulated the expression of key transporters involved in drug resistance in head and neck cancer cells. Transporter expression in the nontumor cell was unaffected. Upon cetuximab pretreatment, the half maximal effective toxic concentration of cisplatin was reduced by 0.75-fold and sunitinib by 0.82-fold in cancer cells. Nontumor cells were not sensitive to cisplatin or sunitinib under the conditions tested. CONCLUSION: Cetuximab regulates the expression and activity of key membrane drug transporters in head and neck cancer cells, involved in drug resistance. The deregulation of the transport mechanism behind cisplatin and sunitinib uptake reverses drug resistance and enhances the cytotoxicity of both drugs.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Cisplatino/farmacologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêuticoRESUMO
P-glycoprotein (P-gp), also known as ABCB1, is a cell membrane transporter that mediates the efflux of chemically dissimilar amphipathic drugs and confers resistance to chemotherapy in most cancers. Homologous transmembrane helices (TMHs) 6 and 12 of human P-gp connect the transmembrane domains with its nucleotide-binding domains, and several residues in these TMHs contribute to the drug-binding pocket. To investigate the role of these helices in the transport function of P-gp, we substituted a group of 14 conserved residues (seven in both TMHs 6 and 12) with alanine and generated a mutant termed 14A. Although the 14A mutant lost the ability to pump most of the substrates tested out of cancer cells, surprisingly, it acquired a new function. It was able to import four substrates, including rhodamine 123 (Rh123) and the taxol derivative flutax-1. Similar to the efflux function of wild-type P-gp, we found that uptake by the 14A mutant is ATP hydrolysis-, substrate concentration-, and time-dependent. Consistent with the uptake function, the mutant P-gp also hypersensitizes HeLa cells to Rh123 by 2- to 2.5-fold. Further mutagenesis identified residues from both TMHs 6 and 12 that synergistically form a switch in the central region of the two helices that governs whether a given substrate is pumped out of or into the cell. Transforming P-gp or an ABC drug exporter from an efflux transporter into a drug uptake pump would constitute a paradigm shift in efforts to overcome cancer drug resistance.