Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39079538

RESUMO

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex, we conducted single-nucleus RNA sequencing and multi-omic sequencing on dup15q-affected individuals (n = 6) as well as individuals with non-dup15q autism (n = 7) and neurotypical control individuals (n = 7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene-expression changes. As compared to other cell types, neuronal subtypes showed greater upregulation of gene expression across a critical region within the duplication. Genes that fell within the duplicated region and had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and autism had largely distinct signatures of chromatin accessibility but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding-factor motifs implicated in each condition implicated distinct biological mechanisms: neuronal JUN and FOS networks in autism vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain, and it finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects of copy-number variants more broadly in neurodevelopmental disorders.

2.
Epilepsy Behav ; 142: 109173, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011526

RESUMO

OBJECTIVE: Chromosome 15q duplication (Dup15q) syndrome and cyclin­dependent kinase-like 5 deficiency disorder (CDD) are rare neurodevelopmental disorders associated with epileptic encephalopathies, with a lack of specifically approved treatment options. ARCADE assessed the efficacy and safety of adjunctive soticlestat (TAK-935) for the treatment of seizures in patients with Dup15q syndrome or CDD (NCT03694275). METHODS: ARCADE was a phase II, open-label, pilot study of soticlestat (≤300 mg/day twice daily, weight-adjusted) in pediatric and adult patients 2-55 years of age with Dup15q syndrome or CDD who experienced ≥3 motor seizures per month in the 3 months before screening and at baseline. The 20-week treatment period consisted of a dose-optimization period and a 12-week maintenance period. Efficacy endpoints included the change from baseline in motor seizure frequency during the maintenance period and the proportion of treatment responders. Safety endpoints included the incidence of treatment-emergent adverse effects (TEAEs). RESULTS: The modified-intent-to-treat population included 20 participants who received ≥1 dose of soticlestat and had ≥1 efficacy assessment (Dup15q syndrome, n = 8; CDD, n = 12). Soticlestat administration during the maintenance period was associated with a median change from baseline in motor seizure frequency of +11.7% in the Dup15q syndrome group and -23.6% in the CDD group. Reductions in all seizure frequency of -23.4% and -30.5% were also observed during the maintenance period in the Dup15q syndrome group and the CDD group, respectively. Most TEAEs were of mild or moderate severity. Serious TEAEs were reported by three patients (15.0%); none were considered drug related. The most common TEAEs were constipation, rash, and seizure. No deaths were reported. CONCLUSIONS: Adjunctive soticlestat treatment was associated with a decrease in motor seizure frequency from baseline in patients with CDD and a decrease in all seizure frequency in both patient groups. Soticlestat treatment was associated with an increase in motor seizure frequency in patients with Dup15q syndrome.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Espasmos Infantis , Adulto , Humanos , Criança , Lactente , Anticonvulsivantes/efeitos adversos , Projetos Piloto , Resultado do Tratamento , Quimioterapia Combinada , Convulsões/tratamento farmacológico , Convulsões/genética , Convulsões/induzido quimicamente , Espasmos Infantis/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Método Duplo-Cego , Proteínas Serina-Treonina Quinases
3.
J Intellect Disabil Res ; 65(1): 32-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073413

RESUMO

BACKGROUND: Comorbidity is the presence of at least two disorders in one person at one time. This study examined the frequency of gastrointestinal (GI) symptoms, sleep problems, comorbid psychopathology, challenging behaviour and autism spectrum disorder (ASD) symptoms in children and adolescents with duplication 15q syndrome (Dup15q), aged 3-17 years. This study also examined whether challenging behaviour in Dup15q is predicted by age, gender, presence of an intellectual disability, sleep problems, GI symptoms and comorbid psychopathology. METHOD: Parental measures were completed by 101 parents of children and adolescents with Dup15q. Questionnaires were composed of the Children's Sleep Habits Questionnaire, Behavior Problems Inventory - Short Form, GI Symptom Inventory, Social Communication Questionnaire and the Child Behavior Checklist. RESULTS: Sleep problems (94%), GI symptoms (87%) and challenging behaviour (100%) were common comorbidities represented in the sample in this study. Significant relationships were found between challenging behaviour and the presence of co-occurring sleep problems, GI symptoms, comorbid psychopathology and ASD symptoms. Further analysis revealed that these comorbidities also predicted challenging behaviour. CONCLUSION: This research demonstrated the importance of studying the relationships between GI symptoms, sleep problems, comorbid psychopathology, ASD symptoms and challenging behaviour in Dup15q and how these conditions can shape the Dup15q phenotype.


Assuntos
Transtorno do Espectro Autista/genética , Gastroenteropatias/genética , Transtornos Mentais/genética , Comportamento Problema/psicologia , Sono/fisiologia , Adolescente , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Duplicação Cromossômica , Cromossomos Humanos Par 15/genética , Comorbidade , Feminino , Gastroenteropatias/epidemiologia , Humanos , Masculino , Transtornos Mentais/epidemiologia , Psicopatologia , Transtornos do Sono-Vigília/epidemiologia , Trissomia
4.
Neurobiol Dis ; 141: 104879, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344153

RESUMO

Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.


Assuntos
Proteínas de Drosophila/metabolismo , Epilepsia/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cromossomos Humanos Par 15/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Perfilação da Expressão Gênica , Humanos , Proteoma , Proteômica , Transcriptoma , Trissomia
5.
Am J Med Genet A ; 182(1): 71-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654560

RESUMO

Duplication of 15q11.2-q13.1 (dup15q syndrome) is one of the most common copy number variations associated with autism spectrum disorders (ASD) and intellectual disability (ID). As with many neurogenetic conditions, accurate behavioral assessment is challenging due to the level of impairment and heterogeneity across individuals. Large-scale phenotyping studies are necessary to inform future clinical trials in this and similar ID syndromes. This study assessed developmental and behavioral characteristics in a large cohort of children with dup15q syndrome, and examined differences based on genetic subtype and epilepsy status. Participants included 62 children (2.5-18 years). Across individuals, there was a wide range of abilities. Although adaptive behavior was strongly associated with cognitive ability, adaptive abilities were higher than cognitive scores. Measures of ASD symptoms were associated with cognitive ability, while parent report of challenging behavior was not. Both genetic subtype and epilepsy were related to degree of impairment across cognitive, language, motor, and adaptive domains. Children with isodicentric duplications and epilepsy showed the greatest impairment, while children with interstitial duplications showed the least. On average, participants with epilepsy experienced seizures over 53% of their lives, and half of children with epilepsy had infantile spasms. Parents of children with isodicentric duplications reported more concerns regarding challenging behaviors. Future trials in ID syndromes should employ a flexible set of assessments, allowing each participant to receive assessments that capture their skills. Multiple sources of information should be considered, and the impact of language and cognitive ability should be taken into consideration when interpreting results.


Assuntos
Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Deficiência Intelectual/genética , Adolescente , Transtorno do Espectro Autista/patologia , Criança , Pré-Escolar , Aberrações Cromossômicas , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Estudos de Coortes , Epilepsia/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Linhagem
6.
Epilepsy Behav ; 86: 131-137, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006259

RESUMO

OBJECTIVE: We studied our collective open-label, compassionate use experience in using cannabidiol (CBD) to treat epilepsy in patients with CDKL5 deficiency disorder and Aicardi, Doose, and Dup15q syndromes. METHODS: We included patients aged 1-30 years with severe childhood-onset epilepsy who received CBD for ≥10 weeks as part of multiple investigator-initiated expanded access or state access programs for a compassionate prospective interventional study: CDKL5 deficiency disorder (n = 20), Aicardi syndrome (n = 19), Dup15q syndrome (n = 8), and Doose syndrome (n = 8). These patients were treated at 11 institutions from January 2014 to December 2016. RESULTS: The percent change in median convulsive seizure frequency for all patients taking CBD in the efficacy group decreased from baseline [n = 46] to week 12 (51.4% [n = 35], interquartile range (IQR): 9-85%) and week 48 (59.1% [n = 27], IQR: 14-86%). There was a significant difference between the percent changes in monthly convulsive seizure frequency during baseline and week 12, χ2(2) = 22.9, p = 0.00001, with no difference in seizure percent change between weeks 12 and 48. Of the 55 patients in the safety group, 15 (27%) withdrew from extended observation by week 144: 4 due to adverse effects, 9 due to lack of efficacy, 1 withdrew consent, and 1 was lost to follow-up. SIGNIFICANCE: This open-label drug trial provides class III evidence for the long-term safety and efficacy of CBD administration in patients with treatment-resistant epilepsy (TRE) associated with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Adjuvant therapy with CBD showed similar safety and efficacy for these four syndromes as reported in a diverse population of TRE etiologies. This study extended analysis of the prior report from 12 weeks to 48 weeks of efficacy data and suggested that placebo-controlled randomized trials should be conducted to formally assess the safety and efficacy of CBD in these epileptic encephalopathies.


Assuntos
Síndrome de Aicardi/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Canabidiol/uso terapêutico , Cromossomos Humanos 13-15/genética , Epilepsias Mioclônicas/tratamento farmacológico , Síndromes Epilépticas/tratamento farmacológico , Espasmos Infantis/tratamento farmacológico , Adolescente , Adulto , Síndrome de Aicardi/diagnóstico , Anticonvulsivantes/química , Canabidiol/química , Criança , Pré-Escolar , Epilepsias Mioclônicas/diagnóstico , Síndromes Epilépticas/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/deficiência , Espasmos Infantis/diagnóstico , Trissomia/genética , Adulto Jovem
7.
Epilepsy Behav ; 57(Pt A): 133-136, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26949155

RESUMO

Our objective was to define the EEG features during sleep of children with neurodevelopmental disorders due to copy number gains of 15q11-q13 (Dup15q). We retrospectively reviewed continuous EEG recordings of 42 children with Dup15q (mean age: eight years, 32 with idic15), and data collected included background activity, interictal epileptiform discharges, sleep organization, and ictal activity. Three patterns were recognized: Pattern 1: Alpha­delta sleep was noted in 14 children (33%), not associated with any clinical changes. Pattern 2: Electrical status epilepticus in sleep was noted in 15 children (35%), all diagnosed with treatmentresistant epilepsy. Thirteen of the 15 children had clinical seizures. Pattern 3: Frequent bursts of high amplitude bifrontal predominant, paroxysmal fast activity (12­15 Hz) during non-REM sleep was noted in 15 children (35%). All 15 children had treatment-resistant epilepsy. This is the first report of electroencephalographic patterns during sleep of children with Dup15q reporting alpha-delta rhythms, CSWS, and high amplitude fast frequencies. Alpha-delta rhythms are described in children with dysautonomia and/or mood disorders and CSWS in children with developmental regression. The significance of these findings in cognitive function and epilepsy for the children in our cohort needs to be determined with follow-up studies.


Assuntos
Cromossomos Humanos Par 15/genética , Epilepsia/genética , Convulsões/fisiopatologia , Sono/fisiologia , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos , Ritmo Delta , Eletroencefalografia , Feminino , Seguimentos , Humanos , Masculino , Transtornos do Neurodesenvolvimento , Estudos Retrospectivos , Sono/genética
8.
Epilepsy Behav ; 55: 124-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773682

RESUMO

Parents of children with chromosome 15q duplication syndrome (Dup15q) have anecdotally reported high pain threshold as a feature of the disorder. The purpose of this study was to document parental-reported estimates of the frequency of high pain tolerance and the stimuli that fail to evoke a normal pain response. We sent an online survey to 840 families with children with Dup15q to explore the frequency and clinical manifestations of high pain threshold. There were 216 respondents (25.7%). A high pain threshold was reported in 87% of children at some time. There was a trend (p=0.06) for high pain threshold to be more commonly observed among children with the isodicentric (85.6%) and other genetic variants (95%) than interstitial (69.6%) duplications. There was no association between reports of high pain threshold and reports of an intellectual disability (91% of cases), autism spectrum disorder (83% of cases), or self-injurious behavior (40% of cases). Reports included many dramatic cases such as severe burns, broken bones, and electrical traumas, which were associated with little or no evidence of a painful stimulus. A high pain threshold is reported in other disorders associated with intellectual disability and autism; the underlying mechanism in Dup15q and other disorders remains undefined.


Assuntos
Duplicação Cromossômica , Limiar da Dor/fisiologia , Dor/fisiopatologia , Trissomia/fisiopatologia , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Cromossomos Humanos Par 15 , Feminino , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Pais , Comportamento Autodestrutivo/complicações , Comportamento Autodestrutivo/fisiopatologia , Adulto Jovem
9.
Epilepsia ; 55(3): 396-402, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24502430

RESUMO

OBJECTIVE: Seizures are common in individuals with duplications of chromosome 15q11.2-q13 (Dup15q). The goal of this study was to examine the phenotypes and treatments of seizures in Dup15q in a large population. METHODS: A detailed electronic survey was conducted through the Dup15q Alliance containing comprehensive questions regarding seizures and their treatments in Dup15q. RESULTS: There were 95 responses from Dup15q families. For the 83 with idic(15), 63% were reported to have seizures, of which 81% had multiple seizure types and 42% had infantile spasms. Other common seizure types were tonic-clonic, atonic, myoclonic, and focal. Only 3 of 12 individuals with int dup(15) had seizures. Broad spectrum antiepileptic drugs (AEDs) were the most effective medications, but carbamazepine and oxcarbazepine were also effective, although typical benzodiazepines were relatively ineffective. There was a 24% response rate (>90% seizure reduction) to the first AED tried. For those with infantile spasms, adrenocorticotropic hormone (ACTH) was more effective than vigabatrin. SIGNIFICANCE: This is the largest study assessing seizures in Duplication 15q syndrome, but because this was a questionnaire-based study with a low return rate, it is susceptible to bias. Seizures are common in idic(15) and typically difficult to control, often presenting with infantile spasms and progressing to a Lennox-Gastaut-type syndrome. Seizures in those with int dup(15) are less common, with a frequency similar to the general autism population. In addition to broad spectrum AED, medications such as carbamazepine and oxcarbazepine are also relatively effective in controlling seizures in this population, suggesting a possible multifocal etiology, which may also explain the high rate of infantile spasms. Our small sample suggests a relative lack of efficacy of vigabatrin and other γ-aminobutyric acid (GABA)ergic medications, such as typical benzodiazepines, which may be attributable to abnormal GABAergic transmission resulting from the duplication of a cluster of GABAß3 receptor genes in the 15q11.2-13 region.


Assuntos
Anticonvulsivantes/uso terapêutico , Coleta de Dados/métodos , Convulsões/tratamento farmacológico , Convulsões/genética , Trissomia/genética , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Feminino , Humanos , Masculino , Convulsões/diagnóstico , Síndrome , Resultado do Tratamento
10.
Ther Adv Rare Dis ; 5: 26330040241234932, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450288

RESUMO

Maternal 15q11.2-13.1 duplication syndrome, or Dup15q syndrome (Dup15q), is a rare neurodevelopmental disorder affecting as many as 1 in 5000 to 1 in 20,000 children worldwide. Autism and seizures are two of the most commonly observed phenotypes in Dup15q, with intellectual disability, hypotonia, gastrointestinal distress, and substantial fine and gross motor deficits also commonly reported. The community that is now known as the Dup15q Alliance started in 1994 as a small group of families raising children with chromosome 15q duplications. Originally named IsoDicentric 15 Exchange, Advocacy and Support (IDEAS), the group received official nonprofit organization status 10 years later and rebranded to its current name, Dup15q Alliance, shortly thereafter. Today, there are over 2200 families affiliated with Dup15q Alliance, with an average intake of 10 new families each month. Historically, Dup15q Alliance has provided the community with access to family and caregiver resources in addition to serving as a repository for basic educational information about Dup15q and research developments. The recent installation of a dedicated director of scientific and clinical initiatives alongside other infrastructural changes has now primed the Dup15q Alliance to expand its scientific footprint by funding cutting-edge research, supporting clinical sites and trials, and investing in novel therapeutics that have the potential to change the reality of a Dup15q syndrome diagnosis. To do this, we have developed the LEARN. TREAT. CURE. program to align initiatives, fast-track progress, and bring hope and reality into coexistence. Briefly, we seek to learn as much as we can about the syndrome through cutting-edge research, natural history studies, and patient registry utilization, identify and develop methods to treat the symptoms of our patient community, with the ultimate goal of developing a cure for the disease-causing symptoms of the syndrome.


A campaign to accelerate drug discovery in Dup15q Syndrome Patient advocacy groups aid in raising awareness and funding for specific disorders. Nearly three decades ago, Dup15q Alliance was founded by parents of individuals with maternal Duplication 15q Syndrome. This group has grown significantly and is now focused on funding programs to advance research. To do this, they have revised their infrastructure to include a part-time Director of Scientific and Clinical Initiatives and developed a fundraising campaign dedicated to scientific and clinical programming. They also emphasize collaboration and community engagement as key elements of the campaign.

11.
Ther Adv Rare Dis ; 5: 26330040241254122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808315

RESUMO

Angelman syndrome (AS) and duplication 15q (dup15q) syndrome are rare neurogenetic conditions arising from a common locus on the long arm of chromosome 15. Individuals with both conditions share some clinical features (e.g. intellectual disability, epilepsy) and often require lifelong care. Disease-modifying therapies for both conditions are emerging, resulting in a significant need for a better understanding of the natural history of both AS and dup15q. Patient advocacy groups for both conditions recognized a need for a data repository that would link data on individuals from multiple sources to expand research, increase understanding of natural history, and accelerate the development of treatments, resulting in the Linking Angelman and Dup15q Data for Expanded Research (LADDER) Database. This paper describes the development and functionality of the LADDER Database - including challenges, lessons learned, and preliminary feasibility - and how it can be used as a model for other rare conditions.


The LADDER database: a model for advancing research, clinical guidance, and therapeutic development for rare conditions This paper describes the development and functionality of the Linking Angelman and Dup15q Data for Expanded Research (LADDER) Database, which is a data repository for two rare neurogenetic conditions: Angelman syndrome (AS) and duplication 15q (dup15q) syndrome. AS and dup15q syndrome arise from genetic abnormalities on chromosome 15 and share some clinical features (e.g. intellectual disability, epilepsy). LADDER was developed by patient advocacy organizations representing each condition in partnership with RTI International. LADDER links data on individuals from multiple sources to expand research, increase understanding of natural history, and accelerate the development of treatments for both AS and dup15q syndrome. The LADDER Database can be used as a model for expanding research and enhancing clinical trial readiness in other rare conditions.

12.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826276

RESUMO

Recurrent copy number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder (ASD). Duplication of 15q11.2-13.1 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of ASD by over 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown. To identify the cell-type-specific transcriptional and epigenetic effects of dup15q in the human frontal cortex we conducted single-nucleus RNA-sequencing and multi-omic sequencing on dup15q cases (n=6) as well as non-dup15q ASD (n=7) and neurotypical controls (n=7). Cell-type-specific differential expression analysis identified significantly regulated genes, critical biological pathways, and differentially accessible genomic regions. Although there was overall increased gene expression across the duplicated genomic region, cellular identity represented an important factor mediating gene expression changes. Neuronal subtypes, showed greater upregulation of gene expression across a critical region within the duplication as compared to other cell types. Genes within the duplicated region that had high baseline expression in control individuals showed only modest changes in dup15q, regardless of cell type. Of note, dup15q and ASD had largely distinct signatures of chromatin accessibility, but shared the majority of transcriptional regulatory motifs, suggesting convergent biological pathways. However, the transcriptional binding factor motifs implicated in each condition implicated distinct biological mechanisms; neuronal JUN/FOS networks in ASD vs. an inflammatory transcriptional network in dup15q microglia. This work provides a cell-type-specific analysis of how dup15q changes gene expression and chromatin accessibility in the human brain and finds evidence of marked cell-type-specific effects of this genetic driver. These findings have implications for guiding therapeutic development in dup15q syndrome, as well as understanding the functional effects CNVs more broadly in neurodevelopmental disorders.

13.
Front Neuroanat ; 18: 1410791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873093

RESUMO

Angelman syndrome (AS) is a neurogenetic disorder caused by mutations or deletions in the maternally-inherited UBE3A allele, leading to a loss of UBE3A protein expression in neurons. The paternally-inherited UBE3A allele is epigenetically silenced in neurons during development by a noncoding transcript (UBE3A-ATS). The absence of neuronal UBE3A results in severe neurological symptoms, including speech and language impairments, intellectual disability, and seizures. While no cure exists, therapies aiming to restore UBE3A function-either by gene addition or by targeting UBE3A-ATS-are under development. Progress in developing these treatments relies heavily on inferences drawn from mouse studies about the function of UBE3A in the human brain. To aid translational efforts and to gain an understanding of UBE3A and UBE3A-ATS biology with greater relevance to human neurodevelopmental contexts, we investigated UBE3A and UBE3A-ATS expression in the developing brain of the rhesus macaque, a species that exhibits complex social behaviors, resembling aspects of human behavior to a greater degree than mice. Combining immunohistochemistry and in situ hybridization, we mapped UBE3A and UBE3A-ATS regional and cellular expression in normal prenatal, neonatal, and adolescent rhesus macaque brains. We show that key hallmarks of UBE3A biology, well-known in rodents, are also present in macaques, and suggest paternal UBE3A silencing in neurons-but not glial cells-in the macaque brain, with onset between gestational day 48 and 100. These findings support proposals that early-life, perhaps even prenatal, intervention is optimal for overcoming the maternal allele loss of UBE3A linked to AS.

14.
J Neurodev Disord ; 16(1): 39, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014349

RESUMO

BACKGROUND: Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABAARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls. METHODS: We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05. RESULTS: Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation. CONCLUSIONS: Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.


Assuntos
Cromossomos Humanos Par 15 , Modelos Animais de Doenças , Eletroencefalografia , Animais , Camundongos , Cromossomos Humanos Par 15/genética , Masculino , Feminino , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Sono/genética , Trissomia/fisiopatologia , Trissomia/genética , Aberrações Cromossômicas , Deficiência Intelectual
15.
Eur J Cell Biol ; 103(3): 151446, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39059105

RESUMO

Chromosome 15q11.2-13.1 duplication (Dup15q) syndrome is one of the most common autism spectrum disorders (ASDs) associated with copy number variants (CNVs). For the analysis of CNV-relevant pathological cellular phenotypes, a CNV-corrected isogenic cell line is useful for excluding the influence of genetic background. Here, we devised a strategy to remove the isodicentric chromosome 15 by inserting a puro-ΔTK selection cassette into the extra chromosome using the CRISPR-Cas9 system, followed by a subsequent two-step drug selection. A series of assays, including qPCR-based copy number analysis and karyotype analysis, confirmed the elimination of the extra chromosome. Furthermore, cerebral organoids were generated from the parental Dup15q iPSCs and their isogenic iPSCs. scRNA-seq analysis revealed the alteration of expression levels in ion-channel-related genes and synapse-related genes in glutamatergic and GABAergic neurons in Dup15q organoids, respectively. The established isogenic cell line is a valuable resource for unraveling cellular and molecular alterations associated with Dup15q syndrome.

16.
Brain Behav ; 14(4): e3437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616334

RESUMO

BACKGROUND: The 15q11-q13 region is a genetic locus with genes subject to genomic imprinting, significantly influencing neurodevelopment. Genomic imprinting is an epigenetic phenomenon that causes differential gene expression based on the parent of origin. In most diploid organisms, gene expression typically involves an equal contribution from both maternal and paternal alleles, shaping the phenotype. Nevertheless, in mammals, including humans, mice, and marsupials, the functional equivalence of parental alleles is not universally maintained. Notably, during male and female gametogenesis, parental alleles may undergo differential marking or imprinting, thereby modifying gene expression without altering the underlying DNA sequence. Neurodevelopmental disorders, such as Prader-Willi syndrome (PWS) (resulting from the absence of paternally expressed genes in this region), Angelman syndrome (AS) (associated with the absence of the maternally expressed UBE3A gene), and 15q11-q13 duplication syndrome (resulting from the two common forms of duplications-either an extra isodicentric 15 chromosome or an interstitial 15 duplication), are the outcomes of genetic variations in this imprinting region. METHODS: Conducted a genomic study to identify the frequency of pathogenic variants impacting the 15q11-q13 region in an ethnically homogenous population from Bangladesh. Screened all known disorders from the DECIPHER database and identified variant enrichment within this cohort. Using the Horizon analysis platform, performed enrichment analysis, requiring at least >60% overlap between a copy number variation and a disorder breakpoint. Deep clinical phenotyping was carried out through multiple examination sessions to evaluate a range of clinical symptoms. RESULTS: This study included eight individuals with clinically suspected PWS/AS, all previously confirmed through chromosomal microarray analysis, which revealed chromosomal breakpoints within the 15q11-q13 region. Among this cohort, six cases (75%) exhibited variable lengths of deletions, whereas two cases (25%) showed duplications. These included one type 2 duplication, one larger atypical duplication, one shorter type 2 deletion, one larger type 1 deletion, and four cases with atypical deletions. Furthermore, thorough clinical assessments led to the diagnosis of four PWS patients, two AS patients, and two individuals with 15q11-q13 duplication syndrome. CONCLUSION: Our deep phenotypic observations identified a spectrum of clinical features that overlap and are unique to PWS, AS, and Dup15q syndromes. Our findings establish genotype-phenotype correlation for patients impacted by variable structural variations within the 15q11-q13 region.


Assuntos
Síndrome de Angelman , Síndrome de Prader-Willi , Humanos , Feminino , Masculino , Animais , Camundongos , Variações do Número de Cópias de DNA/genética , Alelos , Síndrome de Angelman/genética , Síndrome de Prader-Willi/genética , Bangladesh , Mamíferos
17.
Stem Cell Reports ; 18(4): 884-898, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36898382

RESUMO

Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele. Nevertheless, the exact role of UBE3A has not been determined. To establish whether UBE3A overexpression is required for Dup15q neuronal deficits, we generated an isogenic control line for a Dup15q patient-derived induced pluripotent stem cell line. Dup15q neurons exhibited hyperexcitability compared with control neurons, and this phenotype was generally prevented by normalizing UBE3A levels using antisense oligonucleotides. Overexpression of UBE3A resulted in a profile similar to that of Dup15q neurons except for synaptic phenotypes. These results indicate that UBE3A overexpression is necessary for most Dup15q cellular phenotypes but also suggest a role for other genes in the duplicated region.


Assuntos
Transtorno Autístico , Aberrações Cromossômicas , Cromossomos Humanos Par 15 , Ubiquitina-Proteína Ligases , Humanos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
Res Dev Disabil ; 131: 104338, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179574

RESUMO

BACKGROUND: Despite the increasing number of clinical trials involving children with neurodevelopmental disorders, appropriate and objective outcome measures for behavioral symptoms are still required. AIM: This study assessed the agreement between parents' and clinical researchers' ratings of behavioral problem severity in children with fragile X syndrome (FXS) and chromosome 15 imprinting disorders. METHODS AND PROCEDURES: The cohort comprised 123 children (64% males), aged 3-17 years, with FXS (n = 79), Prader-Willi (PWS; n = 19), Angelman (AS; n = 15), and Chromosome 15q duplication (n = 10) syndromes. Specific items from the Autism Diagnostic Observation Schedule-Second Edition and Aberrant Behavior Checklist-Community Edition mapping to corresponding behavioral domains were selected ad-hoc, to assess behavioral problems. OUTCOMES AND RESULTS: Inter-rater agreement for the cohort was slight for self-injury (Intraclass Correlation Coefficient (ICC) = 0.12), fair for tantrums/aggression (0.24) and mannerisms/stereotypies (0.25), and moderate for hyperactivity (0.48). When stratified by diagnosis, ICC ranged from poor (0; self-injury, AS and PWS) to substantial (0.48; hyperactivity, females with FXS). CONCLUSIONS AND IMPLICATIONS: The high level of inter-rater disagreement across most domains suggests that parents' and researchers' assessments led to discrepant appraisal of behavioral problem severity. These findings have implications for treatment targets and outcome measure selection in clinical trials, supporting a multi-informant approach.


Assuntos
Síndrome do Cromossomo X Frágil , Síndrome de Prader-Willi , Comportamento Problema , Criança , Masculino , Feminino , Humanos , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , Cromossomos Humanos Par 15/genética , Pais
19.
J Child Adolesc Psychopharmacol ; 32(2): 122-126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905409

RESUMO

Objectives: Maternal 15q11-13 duplication syndrome (dup15q) is one of the most frequently observed and penetrant genetic abnormalities associated with autism spectrum disorder (ASD), and commonly presents with psychiatric symptoms and seizures. Although carbamazepine has been reported as effective in managing comorbid seizures in dup15q, it has not been reported to be used as a mood stabilizer in this population. Methods: We retrospectively reviewed the charts of five consecutive patients presenting with previously diagnosed dup15q and ASD seeking treatment for psychiatric symptoms and, in four of the patients, seizures. These were the only patients with dup15q treated with carbamazepine in the Neurodevelopmental Psychopharmacology Clinic at the University of Illinois at Chicago during the review period. Results: During treatment, carbamazepine was found to be more effective than other mood stabilizers in all five patients, and in one case a better antiepileptic. Symptoms consistent with bipolar mood disorder such as hyperactivity, impulsivity, irritability, mood lability, intrusiveness, and pressured speech were improved with carbamazepine in combination with other psychotropic medications. This improvement was greater than with other mood stabilizers, including oxcarbazepine, valproate, and lamotrigine. In one case, valproate paradoxically worsened symptoms. In three cases, anxiety was improved with carbamazepine when used in conjunction with other medications targeting anxiety. Conclusions: In treating five patients with dup15q, carbamazepine more effectively stabilized mood-related symptoms than alternative treatments. Prospective randomized controlled trials are necessary to confirm this observation.


Assuntos
Transtorno do Espectro Autista , Anticonvulsivantes/uso terapêutico , Antimaníacos/uso terapêutico , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Benzodiazepinas , Carbamazepina/uso terapêutico , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Convulsões , Síndrome , Ácido Valproico/uso terapêutico
20.
Pediatr Neurol ; 128: 9-15, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34992036

RESUMO

BACKGROUND: Sleep comorbidities are common, and sometimes severe, for children with early-life epilepsies (ELEs). Yet, there is a paucity of data regarding the profile of these sleep disturbances and their complications. METHODS: Participants registered with the Rare Epilepsy Network (REN) were queried about sleep via online questionnaires. Descriptive statistics and logistic regression were performed. RESULTS: Median age of the 356 children was 56 months (interquartile range 30 to 99), 56% were female, and 53% (188/356) endorsed a sleep concern. Frequent nighttime awakenings (157 of 350; 45%), difficulty falling asleep (133 of 350; 38%), and very restless sleep (118 of 345; 34%) were most endorsed. Nocturnal seizures were associated with sleep concerns and were reported in 75% (268 of 356) of children. Of the children with nocturnal seizures, 56% (118 of 268) had sleep concerns. Of the children without nocturnal seizures, 43% (38 of 88) had sleep concerns. Sleep concerns were most common in dup15q syndrome (16 of 19; 84%). Children aged 4 to ≤10 years (adjusted odds ratio [aOR] 16.1; 95% confidence interval [CI] 2.0, 131.0) and 10 to <13 years (aOR 22.2; 95% CI 2.6, 188.6) had a greater odds of having a sleep concern compared with children aged ≤6 months. Female sex appeared protective for sleep concerns (aOR 0.6; 95% CI 0.4, 0.9). The association between sleep concerns and nocturnal seizures was weaker when adjusted for sex and age category in a logistic regression model. CONCLUSIONS: Reported sleep concerns are highly prevalent in children with ELEs and persist with age, in contrast to what is expected in healthy children. There may be unmet sleep-related clinical needs in children with ELEs.


Assuntos
Epilepsia/complicações , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/epidemiologia , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pais , Fatores de Risco , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA