RESUMO
Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of ß-lactamases. The early ß-lactamase inhibitors (BLIs) are characterized by spectra limited to class A ß-lactamases and ineffective against carbapenemases and most extended spectrum ß-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.
Assuntos
Antibacterianos , Pseudomonas aeruginosa , Inibidores de beta-Lactamases , beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/metabolismo , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologiaRESUMO
PURPOSE: Relebactam is a novel ß-lactamase inhibitor, which, when combined with imipenem/cilastatin, is active against both class A and class C ß-lactamases. To evaluate in vitro antimicrobial activity of imipenem/relebactam against a collection of recent clinical isolates of carbapenem-non-susceptible P. aeruginosa and K. pneumoniae ST258 and ST512 KPC producers belonging to different lineages from hospitals in Southern Spain. METHODS: Six hundred and seventy-eight isolates were tested: 265 K. pneumoniae (230 ST512/KPC-3 and 35 ST258/KPC-3) and 413 carbapenem-non-susceptible P. aeruginosa. Imipenem, piperacillin/tazobactam, ceftazidime, cefepime, aztreonam, ceftolozane/tazobactam, meropenem, amikacin, ciprofloxacin, colistin, and ceftazidime/avibactam were used as comparators against P. aeruginosa. Against K. pneumoniae ceftazidime, cefepime, aztreonam, and ceftolozane/tazobactam were not tested, and tigecycline was studied instead. MICs were determined in duplicate by broth microdilution according to EUCAST guidelines. RESULTS: Imipenem/relebactam displayed potent in vitro activity against both sequence types of KPC-3-producing K. pneumoniae. MIC50 and MIC90 values were 0.25 mg/L and 1 mg/L, respectively, with percent of susceptible isolates >97%. Only three K. pneumoniae ST512/KPC-3 isolates and one ST258/KPC-3 were resistant to imipenem/relebactam. Relebactam sensitized 98.5% of K. pneumoniae isolates resistant to imipenem. The activity of imipenem/relebactam against P. aeruginosa was moderate (susceptibility rate: 62.7%). Analysis of the acquired and mutational resistome of isolates with high levels of resistance to imipenem/relebactam has not shown a clear association between them. CONCLUSION: Imipenem/relebactam showed excellent activity against K. pneumoniae KPC-3. The activity of imipenem/relebactam against imipenem-resistant P. aeruginosa was moderate.
Assuntos
Compostos Azabicíclicos , Cefalosporinas , Imipenem , Infecções por Pseudomonas , Humanos , Imipenem/farmacologia , Ceftazidima/farmacologia , Pseudomonas aeruginosa , Klebsiella pneumoniae , Cefepima , Aztreonam , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Tazobactam/farmacologia , beta-Lactamases , Combinação de Medicamentos , Testes de Sensibilidade MicrobianaRESUMO
PURPOSE: The current study evaluated the in vitro activities of ceftolozane/tazobactam (C/T), imipenem/relebactam (IMI/REL), and comparators against recent (2017-2021) clinical isolates of gram-negative bacilli from two countries in southern Europe. METHODS: Nine clinical laboratories (two in Greece; seven in Italy) each collected up to 250 consecutive gram-negative isolates per year from lower respiratory tract, intraabdominal, urinary tract, and bloodstream infection samples. MICs were determined by the CLSI broth microdilution method and interpreted using 2022 EUCAST breakpoints. ß-lactamase genes were identified in select ß-lactam-nonsusceptible isolate subsets. RESULTS: C/T inhibited the growth of 85-87% of Enterobacterales and 94-96% of ESBL-positive non-CRE NME (non-Morganellaceae Enterobacterales) isolates from both countries. IMI/REL inhibited 95-98% of NME, 100% of ESBL-positive non-CRE NME, and 98-99% of KPC-positive NME isolates from both countries. Country-specific differences in percent susceptible values for C/T, IMI/REL, meropenem, piperacillin/tazobactam, levofloxacin, and amikacin were more pronounced for Pseudomonas aeruginosa than Enterobacterales. C/T and IMI/REL both inhibited 84% of P. aeruginosa isolates from Greece and 91-92% of isolates from Italy. MBL rates were estimated as 4% of Enterobacterales and 10% of P. aeruginosa isolates from Greece compared to 1% of Enterobacterales and 3% of P. aeruginosa isolates from Italy. KPC rates among Enterobacterales isolates were similar in both countries (7-8%). OXA-48-like enzymes were only identified in Enterobacterales isolates from Italy (1%) while GES carbapenemase genes were only identified in P. aeruginosa isolates from Italy (2%). CONCLUSION: We conclude that C/T and IMI/REL may provide viable treatment options for many patients from Greece and Italy.
Assuntos
Antibacterianos , Cefalosporinas , Enterobacteriaceae , Imipenem , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Tazobactam , Humanos , Itália , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Tazobactam/farmacologia , Grécia , Imipenem/farmacologia , Cefalosporinas/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Infecções por Pseudomonas/microbiologiaRESUMO
BACKGROUND: Imipenem/relebactam (IMR) was approved for patient use in Taiwan in 2023. We evaluated the in vitro susceptibility of recent Gram-negative pathogens collected in Taiwan hospitals to IMR and comparators with a focus on carbapenem-resistant and KPC-carrying non-Morganellaceae Enterobacterales (NME), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). METHODS: From 2018 to 2021, eight hospitals in Taiwan each collected up to 250 consecutive, aerobic or facultative, Gram-negative pathogens per year from patients with bloodstream, intraabdominal, lower respiratory tract, and urinary tract infections. MICs were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution. Most isolates that were IMR-, imipenem-, or ceftolozane/tazobactam-nonsusceptible were screened for ß-lactamase genes by PCR or whole-genome sequencing. RESULTS: Ninety-eight percent of NME (n = 5063) and 94% of P. aeruginosa (n = 1518) isolates were IMR-susceptible. Percent susceptible values for non-carbapenem ß-lactam comparators, including piperacillin/tazobactam, were 68-79% for NME isolates, while percent susceptible values for all ß-lactam comparators, including meropenem, were 73-81% for P. aeruginosa. IMR retained activity against 93% of multidrug-resistant (MDR) NME and 70% of MDR P. aeruginosa. Sixty-five percent of carbapenem-resistant NME and 81% of KPC-positive NME (n = 80) were IMR-susceptible. IMR inhibited 70% of CRPA (n = 287). Fifty percent of IMR-nonsusceptible NME tested for ß-lactamase carriage had an MBL or OXA-48-like enzyme, whereas most (95%) IMR-nonsusceptible P. aeruginosa examined did not carry acquired ß-lactamase genes. CONCLUSION: Based on our in vitro data, IMR may be a useful option for the treatment of hospitalized patients in Taiwan with infections caused by common Gram-negative pathogens, including carbapenem-resistant NME, KPC-positive NME, and CRPA.
Assuntos
Antibacterianos , Compostos Azabicíclicos , Imipenem , Humanos , Taiwan , Antibacterianos/farmacologia , Imipenem/farmacologia , Carbapenêmicos/farmacologia , Tazobactam , Pseudomonas aeruginosa/genética , beta-Lactamas , beta-Lactamases/genética , Testes de Sensibilidade MicrobianaRESUMO
Background: Relebactam, previously known as MK-7655, is currently being tested in combination with imipenem as a class A and class C ß-lactamase inhibitor, including KPC from Klebsiella pneumoniae. Objective: The objective of the current study was to evaluate the activity of imipenem/relebactam against gram-negative bacilli. Methods: After applying exclusion and inclusion criteria, 72 articles with full texts that describe the prevalence of imipenem/relebactam resistance were chosen for the meta-analysis and systematic review. Articles published between January 2015 and February 2023 were surveyed. The systematic literature search was conducted in PubMed, Web of Science, Google Scholar, and Scopus. Results: The pooled estimation of 282,621 sample isolates revealed that the prevalence rate of imipenem/relebactam resistance is roughly 14.6% (95% CI, 0.116%-0.182%). Conclusions: The findings of this analysis show that imipenem/relebactam resistance is rare in the majority of developed countries. Given that relebactam has proven to restore the activity of imipenem against current clinical isolates, further research into imipenem/relebactam is necessary.
RESUMO
The in vitro activity of imipenem-relebactam, meropenem-vaborbactam, ceftazidime-avibactam, and cefiderocol was evaluated against both clinical and isogenic enterobacterial isolates producing carbapenemases of the SME, NmcA, FRI, and IMI types. Ceftazidime-avibactam and meropenem-vaborbactam showed the highest activity against all tested isolates; imipenem-relebactam showed only moderate activity. All isolates remained susceptible to cefiderocol. Furthermore, avibactam and vaborbactam have greater inhibitory activity than relebactam against the tested carbapenemases. Overall, ceftazidime-avibactam, meropenem-vaborbactam, and cefiderocol were the most effective therapeutic options for treating infections caused by the tested minor carbapenemase producers.
Assuntos
Lactamas , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Meropeném/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , Imipenem/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , CefiderocolRESUMO
As new treatment alternatives for Mycobacterium abscessus complex (MABC) are urgently needed, we determined the minimum inhibitory concentrations (MICs) for novel carbapenem combinations, including imipenem-relebactam and tebipenem-avibactam against 98 MABC isolates by broth microdilution. The MIC50 was reduced from 16 to 8 mg/L by adding relebactam to imipenem, while the addition of avibactam to tebipenem showed a more pronounced reduction from 256 to 16 mg/L, representing a promising non-toxic, oral treatment option for further exploration.
Assuntos
Mycobacterium abscessus , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Combinação de Medicamentos , beta-Lactamases/farmacologiaRESUMO
Pseudomonas aeruginosa high-risk clones pose severe threats to public health. Here, we characterize the imipenem/relebactam (IR) resistance mechanisms in P. aeruginosa high-risk clones sequence type 235 (ST235) and ST463 in China. Minimum inhibitory concentrations (MICs) were determined, and Illumina short-read sequencing was performed for 1,168 clinical carbapenem-resistant P. aeruginosa (CRPA) isolates. The gene copy number and expression level were analyzed by Illumina sequencing depth and reverse transcription-quantitative PCR, respectively. Resistance conferred by bla GES-5 was evaluated by cloning experiments. ST463 and ST235 accounted for 9.8% (115/1,168) and 4.5% (53/1,168) of total isolates, respectively, and showed high frequencies of extensively drug-resistant and difficult-to-treat resistant phenotypes. The overall IR-resistant rate in CRPA was 21.0% (245/1,168). However, the IR resistance rate was 81.7% (94/115) in ST463-PA and 52.8% (28/53) in ST235-PA. Of the ST463 isolates, 92.2% (106/115) were Klebsiella pneumoniae carbapenemase-producing P. aeruginosa (KPC-PA), and all 94 IR-resistant ST463-PA produced KPC-2. Compared to IR-susceptible ST463 KPC-2-PA, IR-resistant ST463 KPC-2-PA exhibited significantly higher bla KPC-2 copy numbers and expression levels. In ST463 KPC-2-PA, 16 mg/L relebactam resulted in additional fourfold reductions in imipenem MIC50/90 values compared to 4 mg/L relebactam. In ST235, 1.9% (1/53) carried bla IMP carbapenemase and 54.7% (29/53) carried bla GES carbapenemase. Other than the IMP producer, all 27 IR-resistant ST235-PA produced GES-5. Cloning experiments revealed that imipenem resistance in bla GES-5-carrying PAO1 transformants was generally unaffected by relebactam. In conclusion, IR-resistant CRPA isolates in China were mainly distributed in P. aeruginosa high-risk clones ST463 and ST235. The major underlying IR resistance mechanisms were bla KPC-2 overexpression and bla GES-5 carriage.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/uso terapêutico , Células Clonais/metabolismo , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológicoRESUMO
Antimicrobial susceptibility was determined for clinical gram-negative isolates from Czech Republic, Hungary, and Poland, where published data for ceftolozane/tazobactam (C/T) and imipenem/relebactam (IMI/REL) is scarce. C/T was active against 94.3% of Enterobacterales, 10-18% higher than the tested cephalosporins and piperacillin/tazobactam. IMI/REL was the most active tested agent against non-Morganellaceae Enterobacterales (99.7% susceptible). C/T was the most active among all studied agents except colistin against Pseudomonas aeruginosa (96.0% susceptible); susceptibility to IMI/REL was 90.7%. C/T maintained activity against 73.7-85.3% of ß-lactam-resistant or multidrug-resistant P. aeruginosa subsets. C/T and IMI/REL could represent important treatment options for patients from these countries.
Assuntos
Infecções por Pseudomonas , Humanos , República Tcheca , Polônia , Hungria , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/uso terapêutico , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Pseudomonas aeruginosa , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade MicrobianaRESUMO
OBJECTIVE: To evaluate effect of inoculum size of extended-spectrum ß-Lactamase (ESBL)-producing-, AmpC-producing-, and KPC-producing Escherichia coli and Klebsiella pneumoniae on the in vitro antibacterial effects of imipenem/relebactam (IMR) and ceftazidime/avibactam (CZA). METHODS: We compared the impact of inoculum size on IMR and CZA of sixteen clinical isolates and three standard isolates through antimicrobial susceptibility tests, time-kill assays and in vitro PK/PD studies. RESULTS: When inoculum size increased from 105 to 107 CFU/mL, an inoculum effect was observed for 26.3% (5/19) and 52.6% (10/19) of IMR and CZA, respectively; time-kill assays revealed that the concentration of CZA increased from ≥ 4 × MIC to 16 × MIC to reach 99.9% killing rate against K. pneumoniae ATCC-BAA 1705 (KPC-2-, OXA-9- and SHV-182-producing) and 60,700 (SHV-27- and DHA-1-producing). While for IMR, a concentration from 1 × MIC to 4 × MIC killed 99.9% of the four strains. When the inoculum size increased to 109 CFU/mL, neither IMR nor CZA showed a detectable antibacterial effect, even at a high concentration. An in vitro PK/PD study revealed a clear bactericidal effect when IMR administered as 1.25 g q6h when inoculum size increased. CONCLUSION: An inoculum effect on CZA was observed more frequent than that on IMR. Among the ß-lactamase-producing strains, the inoculum effect was most common for SHV-producing and KPC-producing strains.
Assuntos
Ceftazidima , Klebsiella pneumoniae , Humanos , Ceftazidima/farmacologia , Escherichia coli , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
The study aimed to investigate prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) blood culture isolates and their susceptibility to two new antibiotics, imipenem/relebactam and ceftazidime/avibactam. Out of 765 isolates recovered from blood cultures in a tertiary care hospital in Serbia between 2020 and 2023, 143 non-repetitive K. pneumoniae strains were included in this study. Minimum inhibitory concentration (MIC) values of the examined antimicrobial drugs was determined by VITEK 2 system, MIC test strip (imipenem/relebactam and ceftazidime/avibactam), and broth microdilution method (tigecycline and colistin). Carbapenemase-encoding genes (blaKPC, blaOXA-48-like, blaNDM, blaVIM, blaIMP) were detected using a multiplex-PCR assay, the BioFire-Blood Culture Identification 2-panel. This closed molecular assay is designed for the BioFire® FilmArray® system, enabling automated sample preparation, amplification, detection, and analysis (bioMérieux, France). Results revealed that K. pneumoniae was the most common isolate from blood cultures in 2022. The prevalence of K. pneumoniae was about 11.6% in 2020 and 2021, while in 2022 it raised to over 30%. Also, the frequency of CRKP increased from 11.76% in 2020, through 15.29% in 2021 to 72.94% in 2022. The majority of CRKP carried blaOXA-48-like (60.0%), followed by blaKPC (16.47%), and blaNDM (8.24%) genes, while 14.12% harboured both blaOXA-48-like and blaNDM genes. Only 25.88% of CRKP isolates were resistant to ceftazidime/avibactam, while 51.76% were resistant to imipenem/relebactam and colistin. The rapid spread of CRKP is particularly concerning because therapeutic options are limited to a few antibiotics. While imipenem/relebactam and colistin showed similar antimicrobial activity against CRKP clinical isolates, ceftazidime/avibactam proved to be the most effective antibiotic.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Ceftazidima/farmacologia , Hemocultura , Klebsiella pneumoniae , Colistina/farmacologia , Sérvia/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Proteínas de Bactérias/genética , Combinação de Medicamentos , Hospitais Universitários , Imipenem/farmacologia , Imipenem/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
We report the emergence of imipenem-relebactam nonsusceptible Pseudomonas aeruginosa in 5 patients treated for nosocomial pneumonia for 10-28 days. Genome sequence analysis identified treatment-emergent mutations in MexAB-OprM and/or MexEF-OprN efflux operons that arose independently in each patient across distinct P. aeruginosa sequence types. Testing with efflux-inhibitor PAßN restored imipenem-relebactam susceptibility.
Assuntos
Pneumonia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genéticaRESUMO
Carbapenem-resistant Enterobacterales, such as KPC-producing Klebsiella pneumoniae, represent a major threat to public health. Novel drug combinations including imipenem-relebactam (IPM-REL) have recently been introduced and have been shown to exhibit excellent activity toward such strains. However, there has recently been reports of the in vivo emergence of IPM-REL resistance in KPC-producing K. pneumoniae. Here, we evaluated, in vitro, the nature of the mutations that lead to IPM-REL resistance in 5 KPC-producing K. pneumoniae strains, including 2 that produce KPC enzymes conferring ceftazidime-avibactam resistance. An in vitro multi-step selection assay was performed and corresponding mutants obtained. Mutations were identified in OmpK36 as well as 2 different mutant derivatives of KPC. Mutant strains exhibited decreased susceptibility to ß-lactams, including the carbapenems, and meropenem-vaborbactam (MEM-VAB). Expression of blaKPC gene variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to carbapenems and decreased susceptibility to CAZ-AVI, and enzymatic assays showed that the inhibitory activity of both AVI and REL was significantly lowered for both KPC mutants compared to parental enzymes. Complementation assays showed that OmpK36 plays a major role in IPM-REL resistance as well resistance to other ß-lactams and ß-lactam/ß-lactamase inhibitor combinations. Overall, this study showed that (i) IPM-REL resistant strains can be obtained from CAZ-AVI-susceptible or -resistant KPC producers, (ii) selection of IPM-REL resistance has a collateral effect on MEM-VAB susceptibility - indicative of shared resistance mechanisms, (iii) and mutations in the KPC sequence may be obtained using IPM-REL selection leading to the possibility of vertical and horizontal transfer of this resistance trait.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Meropeném/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/farmacologia , Cefalosporinas/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Combinação de Medicamentos , Imipenem/farmacologia , Proteínas de Bactérias/metabolismoRESUMO
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel ß-lactam/ß-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved ß-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer ß-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Assuntos
Compostos Azabicíclicos , Pneumonia Bacteriana , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Carbapenêmicos , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/tratamento farmacológico , Pseudomonas aeruginosa , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêuticoRESUMO
Ceftolozane-tazobactam (C/T), imipenem-relebactam (IMR), and ceftazidime-avibactam (CZA) were tested against 2,531 P. aeruginosa strains isolated from patients in the United States from 2018 to 2020 as part of the SMART (Study for Monitoring Antimicrobial Resistance Trends) surveillance program. MICs were determined by CLSI broth microdilution and interpreted using CLSI M100 (2021) breakpoints. Imipenem-, IMR-, or C/T-nonsusceptible isolates were screened for ß-lactamase genes: 96.4% of all isolates and ≥70% of multidrug-resistant (MDR), pan-ß-lactam-nonsusceptible, and difficult-to-treat resistance (DTR) isolates were C/T-susceptible; 52.2% of C/T-nonsusceptible isolates remained susceptible to IMR compared to 38.9% for CZA; and 1.7% of isolates tested were nonsusceptible to both C/T and IMR versus 2.2% of isolates with a C/T-nonsusceptible and CZA-resistant phenotype (a difference of 12 isolates). C/T and IMR modal MICs for pan-ß-lactam-nonsusceptible isolates remained at or below their respective susceptible MIC breakpoints from 2018 to 2020, while the modal MIC for CZA increased 2-fold from 2018 to 2019 and exceeded the CZA-susceptible MIC breakpoint in both 2019 and 2020. Only six of 802 molecularly characterized isolates carried a metallo-ß-lactamase, and two isolates carried a GES carbapenemase. Most P. aeruginosa isolates were C/T-susceptible, including many with MDR, pan-ß-lactam-nonsusceptible, DTR, CZA-resistant, and IMR-nonsusceptible phenotypes. While C/T was the most active antipseudomonal agent, IMR demonstrated greater activity than CZA against isolates nonsusceptible to C/T.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Combinação de Medicamentos , Hospitais , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Estados Unidos , beta-Lactamases/genéticaRESUMO
Pseudomonas aeruginosa isolates were consecutively collected from patients with pneumonia in 29 medical centers in 2020 and susceptibility tested by broth microdilution method. Ceftazidime-avibactam (95.5% susceptible), imipenem-relebactam (94.3% susceptible), and ceftolozane-tazobactam (93.3% susceptible) were the most active compounds after colistin (99.5% susceptible). Susceptibility rates for the ß-lactam/ß-lactamase inhibitor combinations (BL/BLIs) varied against isolates resistant to piperacillin-tazobactam, meropenem, imipenem, and/or ceftazidime. Ceftazidime-avibactam was the most active BL/BLI against resistant subsets from Western Europe, whereas imipenem-relebactam was slightly more active than other BL/BLIs against resistant subsets from Eastern Europe. Susceptibility rates were markedly lower in Eastern Europe than Western Europe.
Assuntos
Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Compostos Azabicíclicos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Hospitalização , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Júpiter , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam , Infecções por Pseudomonas/microbiologia , TazobactamRESUMO
BACKGROUND: The increase in carbapenem-resistant Klebsiella pneumoniae (CRKP) infections is of great concern because of limited treatment options. New antimicrobials were recently approved for clinical therapy. This study evaluated the epidemiology of carbapenemase-producing K. pneumoniae isolates collected at a Greek university hospital during 2017-2020, and their susceptibilities to ceftazidime-avibactam (CAZ/AVI), meropenem-vaborbactam (M/V), imipenem-relebactam (I/R), eravacycline, plazomicin, and comparators. METHODS: Minimum inhibitory concentrations (MICs) were evaluated by Etest. Only colistin MICs were determined by the broth microdilution method. Carbapenemase genes were detected by PCR. Selected isolates were typed by multilocus sequence typing (MLST). RESULTS: A total of 266 carbapenemase-producing K. pneumoniae strains were isolated during the 4-year study period. Among them, KPC was the most prevalent (75.6%), followed by NDM (11.7%), VIM (5.6%), and OXA-48 (4.1%). KPC-producing isolates belonged mainly to ST258 and NDM producers belonged to ST11, whereas OXA-48- and VIM producers were polyclonal. Susceptibility to tigecycline, fosfomycin, and colistin was 80.5%, 83.8%, and 65.8%, respectively. Of the novel agents tested, plazomicin was the most active inhibiting 94% of the isolates at ≤ 1.5 µg/ml. CAZ/AVI and M/V inhibited all KPC producers and I/R 98.5% of them. All OXA-48 producers were susceptible to CAZ/AVI and plazomicin. The novel ß-lactam/ß-lactamase inhibitors (BLBLIs) tested were inactive against MBL-positive isolates, while eravacycline inhibited 61.3% and 66.7% of the NDM and VIM producers, respectively. CONCLUSIONS: KPC remains the predominant carbapenemase among K. pneumoniae, followed by NDM. Novel BLBLIs, eravacycline, and plazomicin are promising agents for combating infections by carbapenemase-producing K. pneumoniae. However, the emergence of resistance to these agents highlights the need for continuous surveillance and application of enhanced antimicrobial stewardship.
Assuntos
Klebsiella pneumoniae , beta-Lactamases , Antibacterianos/farmacologia , Compostos Azabicíclicos , Proteínas de Bactérias/genética , Ácidos Borônicos , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Imipenem/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Sisomicina/análogos & derivados , Tetraciclinas , beta-Lactamases/genéticaRESUMO
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel ß-lactam-ß-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum ß-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D ß-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-ß-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , beta-Lactamas/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacocinética , beta-Lactamas/farmacocinéticaRESUMO
BACKGROUND: Multidrug-resistant (MDR) bacteria are frequently defined using the criteria established by Magiorakos et al [Clin Microbiol Infect 2012;18:268-81]. Difficult-to-treat resistance (DTR) [Kadri et al, Clin Infect Dis 2018;67:1803-14] is a novel approach to defining resistance in gram-negative bacilli focusing on treatment-limiting resistance to first-line agents (all ß-lactams and fluoroquinolones). METHODS: Clinical and Laboratory Standards Institute-defined broth microdilution minimum inhibitory concentrations (MICs) were determined for imipenem/relebactam, ceftolozane/tazobactam, and comparators against respiratory, intraabdominal, and urinary isolates of Enterobacterales (nâ =â 10â 516) and Pseudomonas aeruginosa (nâ =â 2732) collected in 26 US hospitals in 2015-2017. RESULTS: Among all Enterobacterales, 1.0% of isolates were DTR and 15.6% were MDR; 8.4% of P. aeruginosa isolates were DTR and 32.4% were MDR. MDR rates for Enterobacterales and DTR and MDR rates for P. aeruginosa were significantly higher (Pâ <â .05) in isolates collected in intensive care units (ICUs) than in non-ICUs and in respiratory tract isolates than in intraabdominal or urinary tract isolates. In addition, 82.4% of DTR and 92.1% of MDR Enterobacterales and 62.2% of DTR and 82.2% of MDR P. aeruginosa were imipenem/relebactam-susceptible, and 1.5% of DTR and 65.8% of MDR Enterobacterales and 67.5% of DTR and 84.0% of MDR P. aeruginosa were ceftolozane/tazobactam-susceptible. CONCLUSIONS: MDR phenotypes defined using the Magiorakos criteria may overcall treatment-limiting resistance in gram-negative bacilli. In the US, DTR Enterobacterales were infrequent, while MDR Enterobacterales isolates and DTR and MDR P. aeruginosa were common. Imipenem/relebactam (Enterobacterales, P. aeruginosa) and ceftolozane/tazobactam (P. aeruginosa) retained in vitro activity against most DTR and MDR isolates.
Assuntos
Antibacterianos , Infecções por Pseudomonas , Antibacterianos/farmacologia , Compostos Azabicíclicos , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Fenótipo , Pseudomonas aeruginosa , Tazobactam/farmacologia , Estados UnidosRESUMO
We compared the in vitro susceptibility of multidrug-resistant Pseudomonas aeruginosa isolates collected before and after treatment-emergent resistance to ceftolozane-tazobactam. Median baseline and postexposure ceftolozane-tazobactam MICs were 2 and 64 µg/ml, respectively. Whole-genome sequencing identified treatment-emergent mutations in ampC among 79% (11/14) of paired isolates. AmpC mutations were associated with cross-resistance to ceftazidime-avibactam but increased susceptibility to piperacillin-tazobactam and imipenem. A total of 81% (12/16) of ceftolozane-tazobactam-resistant isolates with ampC mutations were susceptible to imipenem-relebactam.