Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.742
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 279-311, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544645

RESUMO

The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.


Assuntos
Imunidade Inata , Inflamação , Animais , Epigênese Genética , Humanos , Imunidade Inata/genética , Inflamação/genética
2.
Annu Rev Immunol ; 35: 371-402, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446062

RESUMO

Nutrition and the gut microbiome regulate many systems, including the immune, metabolic, and nervous systems. We propose that the host responds to deficiency (or sufficiency) of dietary and bacterial metabolites in a dynamic way, to optimize responses and survival. A family of G protein-coupled receptors (GPCRs) termed the metabolite-sensing GPCRs bind to various metabolites and transmit signals that are important for proper immune and metabolic functions. Members of this family include GPR43, GPR41, GPR109A, GPR120, GPR40, GPR84, GPR35, and GPR91. In addition, bile acid receptors such as GPR131 (TGR5) and proton-sensing receptors such as GPR65 show similar features. A consistent feature of this family of GPCRs is that they provide anti-inflammatory signals; many also regulate metabolism and gut homeostasis. These receptors represent one of the main mechanisms whereby the gut microbiome affects vertebrate physiology, and they also provide a link between the immune and metabolic systems. Insufficient signaling through one or more of these metabolite-sensing GPCRs likely contributes to human diseases such as asthma, food allergies, type 1 and type 2 diabetes, hepatic steatosis, cardiovascular disease, and inflammatory bowel diseases.


Assuntos
Doenças Cardiovasculares/imunologia , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta , Homeostase , Humanos , Imunidade , Receptores Acoplados a Proteínas G/imunologia
3.
Annu Rev Immunol ; 34: 479-510, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26927205

RESUMO

CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.


Assuntos
Doenças Autoimunes/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/fisiologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD1/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vigilância Imunológica , Antígenos de Histocompatibilidade Menor/metabolismo , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética
4.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608659

RESUMO

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Assuntos
Longevidade , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transdução de Sinais
5.
Cell ; 185(14): 2495-2509.e11, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764090

RESUMO

Plant fibers in byproduct streams produced by non-harsh food processing methods represent biorepositories of diverse, naturally occurring, and physiologically active biomolecules. To demonstrate one approach for their characterization, mass spectrometry of intestinal contents from gnotobiotic mice, plus in vitro studies, revealed liberation of N-methylserotonin from orange fibers by human gut microbiota members including Bacteroides ovatus. Functional genomic analyses of B. ovatus strains grown under permissive and non-permissive N-methylserotonin "mining" conditions revealed polysaccharide utilization loci that target pectins whose expression correlate with strain-specific liberation of this compound. N-methylserotonin, orally administered to germ-free mice, reduced adiposity, altered liver glycogenesis, shortened gut transit time, and changed expression of genes that regulate circadian rhythm in the liver and colon. In human studies, dose-dependent, orange-fiber-specific fecal accumulation of N-methylserotonin positively correlated with levels of microbiome genes encoding enzymes that digest pectic glycans. Identifying this type of microbial mining activity has potential therapeutic implications.


Assuntos
Citrus sinensis , Microbioma Gastrointestinal , Animais , Citrus sinensis/metabolismo , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Humanos , Camundongos , Pectinas/metabolismo , Polissacarídeos/metabolismo , Serotonina/análogos & derivados
6.
Cell ; 185(5): 815-830.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148838

RESUMO

Rapid neutrophil recruitment to sites of inflammation is crucial for innate immune responses. Here, we reveal that the G-protein-coupled receptor GPR35 is upregulated in activated neutrophils, and it promotes their migration. GPR35-deficient neutrophils are less recruited from blood vessels into inflamed tissue, and the mice are less efficient in clearing peritoneal bacteria. Using a bioassay, we find that serum and activated platelet supernatant stimulate GPR35, and we identify the platelet-derived serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) as a GPR35 ligand. GPR35 function in neutrophil recruitment is strongly dependent on platelets, with the receptor promoting transmigration across platelet-coated endothelium. Mast cells also attract GPR35+ cells via 5-HIAA. Mice deficient in 5-HIAA show a loss of GPR35-mediated neutrophil recruitment to inflamed tissue. These findings identify 5-HIAA as a GPR35 ligand and neutrophil chemoattractant and establish a role for platelet- and mast cell-produced 5-HIAA in cell recruitment to the sites of inflammation and bacterial clearance.


Assuntos
Ácido Hidroxi-Indolacético/metabolismo , Neutrófilos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Inflamação/metabolismo , Ligantes , Camundongos , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Serotonina/metabolismo
7.
Annu Rev Biochem ; 90: 763-788, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848426

RESUMO

Microbial natural products have provided an important source of therapeutic leads and motivated research and innovation in diverse scientific disciplines. In recent years, it has become evident that bacteria harbor a large, hidden reservoir of potential natural products in the form of silent or cryptic biosynthetic gene clusters (BGCs). These can be readily identified in microbial genome sequences but do not give rise to detectable levels of a natural product. Herein, we provide a useful organizational framework for the various methods that have been implemented for interrogating silent BGCs. We divide all available approaches into four categories. The first three are endogenous strategies that utilize the native host in conjunction with classical genetics, chemical genetics, or different culture modalities. The last category comprises expression of the entire BGC in a heterologous host. For each category, we describe the rationale, recent applications, and associated advantages and limitations.


Assuntos
Produtos Biológicos/química , Vias Biossintéticas/genética , Técnicas de Cultura/métodos , Família Multigênica , Genética Reversa/métodos , Bactérias/genética , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Regulação da Expressão Gênica
8.
Annu Rev Biochem ; 90: 789-815, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33770448

RESUMO

The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.


Assuntos
Metagenômica/métodos , Microbiota/fisiologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Microbiota/genética , Fenótipo
9.
Cell ; 184(7): 1693-1705.e17, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770502

RESUMO

Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.


Assuntos
Hemípteros/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Toxinas Biológicas/metabolismo , Animais , Transferência Genética Horizontal , Genes de Plantas , Glucosídeos/química , Glucosídeos/metabolismo , Hemípteros/fisiologia , Herbivoria , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Mucosa Intestinal/metabolismo , Solanum lycopersicum/metabolismo , Malonil Coenzima A/metabolismo , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Toxinas Biológicas/química
10.
Annu Rev Cell Dev Biol ; 36: 291-313, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32559387

RESUMO

Plants constantly perceive internal and external cues, many of which they need to address to safeguard their proper development and survival. They respond to these cues by selective activation of specific metabolic pathways involving a plethora of molecular players that act and interact in complex networks. In this review, we illustrate and discuss the complexity in the combinatorial control of plant specialized metabolism. We hereby go beyond the intuitive concept of combinatorial control as exerted by modular-acting complexes of transcription factors that govern expression of specialized metabolism genes. To extend this discussion, we also consider all known hierarchical levels of regulation of plant specialized metabolism and their interfaces by referring to reported regulatory concepts from the plant field. Finally, we speculate on possible yet-to-be-discovered regulatory principles of plant specialized metabolism that are inspired by knowledge from other kingdoms of life and areas of biological research.


Assuntos
Plantas/metabolismo , Evolução Biológica , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica , Plantas/genética , Transdução de Sinais
11.
Annu Rev Biochem ; 87: 101-103, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925266

RESUMO

This article introduces the Protein Evolution and Design theme of the Annual Review of Biochemistry Volume 87.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas/genética , Proteínas/metabolismo , Animais , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Engenharia de Proteínas/métodos , Proteínas/química
12.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307493

RESUMO

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Assuntos
Metaboloma , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais , Software , Regulação Alostérica , Sítios de Ligação , Escherichia coli , Metabolômica/métodos , Ligação Proteica , Mapas de Interação de Proteínas , Proteoma/química , Saccharomyces cerevisiae , Análise de Sequência de Proteína/métodos
13.
Annu Rev Biochem ; 86: 515-539, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28375743

RESUMO

Riboswitches are common gene regulatory units mostly found in bacteria that are capable of altering gene expression in response to a small molecule. These structured RNA elements consist of two modular subunits: an aptamer domain that binds with high specificity and affinity to a target ligand and an expression platform that transduces ligand binding to a gene expression output. Significant progress has been made in engineering novel aptamer domains for new small molecule inducers of gene expression. Modified expression platforms have also been optimized to function when fused with both natural and synthetic aptamer domains. As this field expands, the use of these privileged scaffolds has permitted the development of tools such as RNA-based fluorescent biosensors. In this review, we summarize the methods that have been developed to engineer new riboswitches and highlight applications of natural and synthetic riboswitches in enzyme and strain engineering, in controlling gene expression and cellular physiology, and in real-time imaging of cellular metabolites and signals.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Riboswitch , Aptâmeros de Nucleotídeos/síntese química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligantes , Imagem Molecular/métodos , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo
14.
Annu Rev Biochem ; 86: 277-304, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654323

RESUMO

Metabolites are the small biological molecules involved in energy conversion and biosynthesis. Studying metabolism is inherently challenging due to metabolites' reactivity, structural diversity, and broad concentration range. Herein, we review the common pitfalls encountered in metabolomics and provide concrete guidelines for obtaining accurate metabolite measurements, focusing on water-soluble primary metabolites. We show how seemingly straightforward sample preparation methods can introduce systematic errors (e.g., owing to interconversion among metabolites) and how proper selection of quenching solvent (e.g., acidic acetonitrile:methanol:water) can mitigate such problems. We discuss the specific strengths, pitfalls, and best practices for each common analytical platform: liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and enzyme assays. Together this information provides a pragmatic knowledge base for carrying out biologically informative metabolite measurements.


Assuntos
Cromatografia Líquida/normas , Cromatografia Gasosa-Espectrometria de Massas/normas , Espectroscopia de Ressonância Magnética/normas , Espectrometria de Massas/normas , Metabolômica/normas , Trifosfato de Adenosina/análise , Animais , Glutationa/análise , Guias como Assunto , Humanos , Microextração em Fase Líquida/métodos , Metabolômica/instrumentação , Metabolômica/métodos , Camundongos , NADP/análise , Solventes
15.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38325379

RESUMO

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Assuntos
Receptores Acoplados a Proteínas G , Ácido Succínico , Camundongos , Ratos , Animais , Humanos , Ácido Succínico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Dinâmica Molecular , Succinatos/metabolismo , Estresse Fisiológico
16.
Mol Cell ; 84(17): 3354-3370.e7, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151423

RESUMO

The functional integrity of CD8+ T cells is closely linked to metabolic reprogramming; therefore, understanding the metabolic basis of CD8+ T cell activation and antitumor immunity could provide insights into tumor immunotherapy. Here, we report that ME2 is critical for mouse CD8+ T cell activation and immune response against malignancy. ME2 deficiency suppresses CD8+ T cell activation and anti-tumor immune response in vitro and in vivo. Mechanistically, ME2 depletion blocks the TCA cycle flux, leading to the accumulation of fumarate. Fumarate directly binds to DAPK1 and inhibits its activity by competing with ATP for binding. Notably, pharmacological inhibition of DAPK1 abolishes the anti-tumor function conferred by ME2 to CD8+ T cells. Collectively, these findings demonstrate a role for ME2 in the regulation of CD8+ T cell metabolism and effector functions as well as an unexpected function for fumarate as a metabolic signal in the inhibition of DAPK1.


Assuntos
Linfócitos T CD8-Positivos , Proteínas Quinases Associadas com Morte Celular , Fumaratos , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Animais , Linfócitos T CD8-Positivos/imunologia , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Fumaratos/metabolismo , Fumaratos/farmacologia , Camundongos Knockout , Linhagem Celular Tumoral , Trifosfato de Adenosina/metabolismo , Transdução de Sinais , Humanos , Camundongos , Metabolismo Energético
17.
Physiol Rev ; 104(4): 1611-1642, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696337

RESUMO

A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.


Assuntos
Metabolismo Energético , Mioglobina , Oxigênio , Animais , Mioglobina/metabolismo , Humanos , Oxigênio/metabolismo , Metabolismo Energético/fisiologia , Tecido Adiposo Marrom/metabolismo , Fosforilação Oxidativa , Termogênese/fisiologia
18.
Cell ; 167(3): 829-842.e13, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27745970

RESUMO

Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.


Assuntos
Arginina/metabolismo , Linfócitos T CD4-Positivos/imunologia , Imunomodulação , Ativação Linfocitária , Melanoma Experimental/imunologia , Neoplasias Cutâneas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Glicólise , Humanos , Memória Imunológica , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação Oxidativa , Proteoma , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Mol Cell ; 82(3): 527-541.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016033

RESUMO

Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.


Assuntos
Argininossuccinato Sintase/metabolismo , Citrulina/metabolismo , Imunidade Inata , Inflamação/enzimologia , Listeriose/enzimologia , Ativação de Macrófagos , Macrófagos/enzimologia , Animais , Argininossuccinato Sintase/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
20.
Immunity ; 51(5): 871-884.e6, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31628054

RESUMO

Group 3 innate lymphoid cells (ILC3s) sense environmental signals that are critical for gut homeostasis and host defense. However, the metabolite-sensing G-protein-coupled receptors that regulate colonic ILC3s remain poorly understood. We found that colonic ILC3s expressed Ffar2, a microbial metabolite-sensing receptor, and that Ffar2 agonism promoted ILC3 expansion and function. Deficiency of Ffar2 in ILC3s decreased their in situ proliferation and ILC3-derived interleukin-22 (IL-22) production. This led to impaired gut epithelial function characterized by altered mucus-associated proteins and antimicrobial peptides and increased susceptibility to colonic injury and bacterial infection. Ffar2 increased IL-22+ CCR6+ ILC3s and influenced ILC3 abundance in colonic lymphoid tissues. Ffar2 agonism differentially activated AKT or ERK signaling and increased ILC3-derived IL-22 via an AKT and STAT3 axis. Our findings suggest that Ffar2 regulates colonic ILC3 proliferation and function, and they identify an ILC3-receptor signaling pathway modulating gut homeostasis and pathogen defense.


Assuntos
Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Microbioma Gastrointestinal/imunologia , Expressão Gênica , Humanos , Imunomodulação , Mucosa Intestinal/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Receptores de Superfície Celular/agonistas , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA