Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1362-1376.e18, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545087

RESUMO

Lungfishes are the closest extant relatives of tetrapods and preserve ancestral traits linked with the water-to-land transition. However, their huge genome sizes have hindered understanding of this key transition in evolution. Here, we report a 40-Gb chromosome-level assembly of the African lungfish (Protopterus annectens) genome, which is the largest genome assembly ever reported and has a contig and chromosome N50 of 1.60 Mb and 2.81 Gb, respectively. The large size of the lungfish genome is due mainly to retrotransposons. Genes with ultra-long length show similar expression levels to other genes, indicating that lungfishes have evolved high transcription efficacy to keep gene expression balanced. Together with transcriptome and experimental data, we identified potential genes and regulatory elements related to such terrestrial adaptation traits as pulmonary surfactant, anxiolytic ability, pentadactyl limbs, and pharyngeal remodeling. Our results provide insights and key resources for understanding the evolutionary pathway leading from fishes to humans.


Assuntos
Adaptação Biológica , Evolução Biológica , Peixes/genética , Sequenciamento Completo do Genoma , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/fisiologia , Animais , Extremidades/anatomia & histologia , Extremidades/fisiologia , Peixes/anatomia & histologia , Peixes/classificação , Peixes/fisiologia , Filogenia , Fenômenos Fisiológicos Respiratórios , Sistema Respiratório/anatomia & histologia , Vertebrados/genética
2.
Immunol Rev ; 317(1): 166-186, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37144896

RESUMO

The pulmonary surfactant system of the lung is a lipid and protein complex, which regulates the biophysical properties of the alveoli to prevent lung collapse and the innate immune system in the lung. Pulmonary surfactant is a lipoprotein complex consisting of 90% phospholipids and 10% protein, by weight. Two minor components of pulmonary surfactant phospholipids, phosphatidylglycerol (PG) and phosphatidylinositol (PI), exist at very high concentrations in the extracellular alveolar compartments. We have reported that one of the most dominant molecular species of PG, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and PI inhibit inflammatory responses induced by multiple toll-like receptors (TLR2/1, TLR3, TLR4, and TLR2/6) by interacting with subsets of multiprotein receptor components. These lipids also exert potent antiviral effects against RSV and influenza A, in vitro, by inhibiting virus binding to host cells. POPG and PI inhibit these viral infections in vivo, in multiple animal models. Especially noteworthy, these lipids markedly attenuate SARS-CoV-2 infection including its variants. These lipids are natural compounds that already exist in the lung and, thus, are less likely to cause adverse immune responses by hosts. Collectively, these data demonstrate that POPG and PI have strong potential as novel therapeutics for applications as anti-inflammatory compounds and preventatives, as treatments for broad ranges of RNA respiratory viruses.


Assuntos
COVID-19 , Surfactantes Pulmonares , Animais , Humanos , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Receptor 2 Toll-Like , SARS-CoV-2 , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fosfatidilgliceróis/uso terapêutico , Fosfatidilgliceróis/farmacologia
3.
J Lipid Res ; 65(2): 100496, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185217

RESUMO

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Assuntos
Proteinose Alveolar Pulmonar , Animais , Camundongos , Humanos , Proteinose Alveolar Pulmonar/tratamento farmacológico , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/metabolismo , Macrófagos Alveolares , Pulmão/metabolismo , Macrófagos/metabolismo , Lipídeos
4.
Biochem Biophys Res Commun ; 712-713: 149913, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640738

RESUMO

Innate immunity of invertebrates offers potent antimicrobial peptides (AMPs) against drug-resistant infections. To identify new worm ß-hairpin AMPs, we explored the sequence diversity of proteins with a BRICHOS domain, which comprises worm AMP precursors. Strikingly, we discovered new BRICHOS AMPs not in worms, but in caecilians, the least studied clade of vertebrates. Two precursor proteins from Microcaecilia unicolor and Rhinatrema bivittatum resemble SP-C lung surfactants and bear worm AMP-like peptides at C-termini. The analysis of M. unicolor tissue transcriptomes shows that the AMP precursor is highly expressed in the lung along with regular SP-C, suggesting a different, protective function. The peptides form right-twisted ß-hairpins, change conformation upon lipid binding, and rapidly disrupt bacterial membranes. Both peptides exhibit broad-spectrum activity against multidrug-resistant ESKAPE pathogens with 1-4 µM MICs and remarkably low toxicity, giving 40-70-fold selectivity towards bacteria. These BRICHOS AMPs, previously unseen in vertebrates, reveal a novel lung innate immunity mechanism and offer a promising antibiotics template.


Assuntos
Peptídeos Antimicrobianos , Pulmão , Animais , Sequência de Aminoácidos , Anfíbios/imunologia , Anfíbios/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Testes de Sensibilidade Microbiana
5.
Int J Med Sci ; 21(5): 775-783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617013

RESUMO

Pulmonary surfactants, a complex assembly of phospholipids and surfactant proteins such as SP-B and SP-C, are critical for maintaining respiratory system functionality by lowering surface tension (ST) and preventing alveolar collapse. Our study introduced five synthetic SP-B peptides and one SP-C peptide, leading to the synthesis of CHAsurf candidates (CHAsurf-1 to CHAsurf-5) for evaluation. We utilized a modified Wilhelmy balance test to assess the surface tension properties of the surfactants, measuring spreading rate, surface adsorption, and ST-area diagrams to comprehensively evaluate their performance. Animal experiments were performed on New Zealand white rabbits to test the efficacy of CHAsurf-4B, a variant chosen for its economic viability and promising ST reduction properties, comparable to Curosurf®. The study confirmed that higher doses of SP-B in CHAsurf-4 are associated with improved ST reduction. However, due to cost constraints, CHAsurf-4B was selected for in vivo assessment. The animal model revealed that CHAsurf-4B could restore alveolar structure and improve lung elasticity, akin to Curosurf®. Our research highlights the significance of cysteine residues and disulfide bonds in the structural integrity and function of synthetic SP-B analogues, offering a foundation for future surfactant therapy in respiratory disorders. This study's findings support the potential of CHAsurf-4B as a therapeutic agent, meriting further investigation to solidify its role in clinical applications.


Assuntos
Surfactantes Pulmonares , Animais , Coelhos , Cisteína , Elasticidade , Surfactantes Pulmonares/farmacologia , Tensoativos
6.
Lung ; 202(3): 299-315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684519

RESUMO

PURPOSE: Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse. Lung function in ARDS could potentially be restored with surfactant replacement therapy, and synthetic surfactants with modified peptide analogues may better withstand inactivation in ARDS alveoli than natural surfactants. METHODS: This study aimed to investigate the activity in vitro and the bolus effect (200 mg phospholipids/kg) of synthetic surfactant CHF5633 with analogues of SP-B and SP-C, or natural surfactant Poractant alfa (Curosurf®, both preparations Chiesi Farmaceutici S.p.A.) in a severe ARDS model (the ratio of partial pressure arterial oxygen and fraction of inspired oxygen, P/F ratio ≤ 13.3 kPa) induced by hydrochloric acid instillation followed by injurious ventilation in adult New Zealand rabbits. The animals were ventilated for 4 h after surfactant treatment and the respiratory parameters, histological appearance of lung parenchyma and levels of inflammation, oxidative stress, surfactant dysfunction, and endothelial damage were evaluated. RESULTS: Both surfactant preparations yielded comparable improvements in lung function parameters, reductions in lung injury score, pro-inflammatory cytokines levels, and lung edema formation compared to untreated controls. CONCLUSIONS: This study indicates that surfactant replacement therapy with CHF5633 improves lung function and lung architecture, and attenuates inflammation in severe ARDS in adult rabbits similarly to Poractant alfa. Clinical trials have so far not yielded conclusive results, but exogenous surfactant may be a valid supportive treatment for patients with ARDS given its anti-inflammatory and lung-protective effects.


Assuntos
Produtos Biológicos , Modelos Animais de Doenças , Pulmão , Estresse Oxidativo , Fosfolipídeos , Proteína B Associada a Surfactante Pulmonar , Proteína C Associada a Surfactante Pulmonar , Surfactantes Pulmonares , Síndrome do Desconforto Respiratório , Animais , Coelhos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/fisiopatologia , Surfactantes Pulmonares/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/metabolismo , Fosfolipídeos/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína B Associada a Surfactante Pulmonar/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteína C Associada a Surfactante Pulmonar/farmacologia , Masculino , Líquido da Lavagem Broncoalveolar , Fragmentos de Peptídeos , Fosfatidilcolinas
7.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926164

RESUMO

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Assuntos
COVID-19 , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Líquido da Lavagem Broncoalveolar/química , Tensoativos , Autoanticorpos , Imunoglobulina A
8.
Biomed Chromatogr ; 38(8): e5926, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881378

RESUMO

Pulmonary surfactant replacement therapy is a promising improvement in neonatal care for infants with respiratory distress syndrome. Lysophosphatidylcholine (LPC) is an undesirable component that can hinder surfactant proteins from enhancing the adsorption of surfactant lipids to balance surface tensions by creating a saturated coating on the interior of the lungs. A novel normal-phase liquid chromatography method utilizing UV detection and non-toxic solvents was developed and validated for the first time to analyze LPC in the complex matrix of pulmonary surfactant medication. The analytical method validation included evaluation of system suitability, repeatability, intermediate precision, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ), stability and robustness. The method yielded detection and quantification limits of 4.4 and 14.5 µg/ml, respectively. The calibration curve was modified linearly within the LOQ to 1.44 mg/ml range, with a determination coefficient of 0.9999 for standards and 0.9997 for sample solutions. Given the lack of reliable published data on LPC analysis in pulmonary surfactant medications, this newly developed method demonstrates promising results and offers advantages of HPLC methodology, including simplicity, accuracy, specificity, sensitivity and an exceptionally low LOD and LOQ. These attributes contribute to considering this achievement as an innovative method.


Assuntos
Limite de Detecção , Lisofosfatidilcolinas , Surfactantes Pulmonares , Cromatografia Líquida de Alta Pressão/métodos , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/química , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/química , Reprodutibilidade dos Testes , Animais , Bovinos , Modelos Lineares
9.
Biomed Chromatogr ; : e5937, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922717

RESUMO

Dexamethasone, a glucocorticoid commonly used in pediatric patients, has potent anti-inflammatory and immunosuppressive properties. However, it is associated with side effects such as reduced lung function and decreased immunity. Pulmonary surfactant lipids are closely linked to lung disease and play a role in reducing surface tension, immune response and antiviral activity. The dysregulation of lipid metabolism is closely associated with lung disease. Hence, untargeted lipidomics may be instrumental in elucidating the effects of dexamethasone on pulmonary surfactant lipids. We obtained surfactant lipid samples from the bronchoalveolar lavage fluid of young mice injected subcutaneously with dexamethasone and conducted a comprehensive lipidomic analysis, comparing them with a control group. We observed a decrease in lipids, such as phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine, and an increase in ceramide, fatty acid, diacylglycerol and monoglyceride, which may impact lung health. This study revealed the influence of dexamethasone on pulmonary surfactant lipids, offering new insights into adverse reactions in clinical settings.

10.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36918039

RESUMO

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Assuntos
Asma , Escarro , Humanos , Escarro/metabolismo , Lipidômica , Proteômica/métodos , Estudos Transversais , Estudos Prospectivos , Lipídeos
11.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203821

RESUMO

In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.


Assuntos
Síndrome do Desconforto Respiratório do Recém-Nascido , Síndrome do Desconforto Respiratório , Recém-Nascido , Humanos , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Genômica , Organogênese , RNA , Pulmão
12.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612850

RESUMO

This study aimed to elucidate the similarities and differences between amyloid-forming corpora amylacea (CA) in the prostate and lung, examine the nature of CAs in cystic tumors of the atrioventricular node (CTAVN), and clarify the distinctions between amyloid-forming CA and spheroid-type amyloid deposition. We conducted proteomics analyses using liquid chromatography-tandem mass spectrometry with laser microdissection and immunohistochemistry to validate the characteristics of CAs in the lung and prostate. Our findings revealed that the CAs in these organs primarily consisted of common proteins (ß2-microglobulin and lysozyme) and locally produced proteins. Moreover, we observed a discrepancy between the histopathological and proteomic analysis results in CTAVN-associated CAs. In addition, while the histopathological appearance of the amyloid-forming CAs and spheroid-type amyloid deposits were nearly identical, the latter deposition lacked ß2-microglobulin and lysozyme and exhibited evident destruction of the surrounding tissue. A literature review further supported these findings. These results suggest that amyloid-forming CAs in the lung and prostate are formed through a shared mechanism, serving as waste containers (wasteosomes) and/or storage for excess proteins (functional amyloids). In contrast, we hypothesize that while amyloid-forming CA and spheroid-type amyloid deposits are formed, in part, through common mechanisms, the latter are pathological.


Assuntos
Muramidase , Placa Amiloide , Masculino , Humanos , Imuno-Histoquímica , Proteômica , Proteínas Amiloidogênicas
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 337-342, 2024 Apr 15.
Artigo em Zh | MEDLINE | ID: mdl-38660896

RESUMO

OBJECTIVES: To investigate the effects of different angles of pulmonary surfactant (PS) administration on the incidence of bronchopulmonary dysplasia and intracranial hemorrhage in preterm infants. METHODS: A prospective study was conducted on 146 preterm infants (gestational age <32 weeks) admitted to the Department of Neonatology, Provincial Hospital Affiliated to Anhui Medical University from January 2019 to May 2023. The infants were randomly assigned to different angles for injection of pulmonary surfactant groups: 0° group (34 cases), 30° group (36 cases), 45° group (38 cases), and 60° group (38 cases). Clinical indicators and outcomes were compared among the groups. RESULTS: The oxygenation index was lower in the 60° group compared with the other three groups, with shorter invasive ventilation time and oxygen use time, and a lower incidence of bronchopulmonary dysplasia than the other three groups (P<0.05). The incidence of intracranial hemorrhage was lower in the 60° group compared to the 0° group (P<0.05). The cure rate in the 60° group was higher than that in the 0° group and the 30° group (P<0.05). CONCLUSIONS: The clinical efficacy of injection of pulmonary surfactant at a 60° angle is higher than other angles, reducing the incidence of intracranial hemorrhage and bronchopulmonary dysplasia in preterm infants.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Hemorragias Intracranianas , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/administração & dosagem , Recém-Nascido , Estudos Prospectivos , Displasia Broncopulmonar/prevenção & controle , Displasia Broncopulmonar/tratamento farmacológico , Displasia Broncopulmonar/etiologia , Masculino , Feminino , Hemorragias Intracranianas/prevenção & controle , Hemorragias Intracranianas/induzido quimicamente
14.
Biophys J ; 122(15): 3099-3107, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37353933

RESUMO

Liquid ventilation is a mechanical ventilation technique in which the entire or part of the lung is filled with oxygenated perfluorocarbon (PFC) liquids rather than air in conventional mechanical ventilation. Despite its many ideal biophysicochemical properties for assisting liquid breathing, a general misconception about PFC is to use it as a replacement for pulmonary surfactant. Because of the high PFC-water interfacial tension (59 mN/m), pulmonary surfactant is indispensable in liquid ventilation to increase lung compliance. However, the biophysical function of pulmonary surfactant in liquid ventilation is still unknown. Here, we have studied the adsorption and dynamic surface activity of a natural surfactant preparation, Infasurf, at the PFC-water interface using constrained drop surfactometry. The constrained drop surfactometry is capable of simulating the intra-alveolar microenvironment of liquid ventilation under physiologically relevant conditions. It was found that Infasurf adsorbed to the PFC-water interface reduces the PFC-water interfacial tension from 59 mN/m to an equilibrium value of 9 mN/m within seconds. Atomic force microscopy revealed that after de novo adsorption, Infasurf forms multilayered structures at the PFC-water interface with an average thickness of 10-20 nm, depending on the adsorbing surfactant concentration. It was found that the adsorbed Infasurf film is capable of regulating the interfacial tension of the PFC-water interface within a narrow range, between ∼12 and ∼1 mN/m, during dynamic compression-expansion cycles that mimic liquid ventilation. These findings have novel implications in understanding the physiological and biophysical functions of the pulmonary surfactant film at the PFC-water interface, and may offer new translational insights into the development of liquid ventilation and liquid breathing techniques.


Assuntos
Fluorocarbonos , Ventilação Líquida , Surfactantes Pulmonares , Surfactantes Pulmonares/química , Tensoativos , Tensão Superficial , Água/química
15.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L508-L517, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642656

RESUMO

Exogenous surfactant therapy has been used as a standard clinical intervention for treating premature newborns with respiratory distress syndrome. The phospholipid concentrations of exogenous surfactants used in clinical practice are consistently higher than 25 mg/mL; while it was estimated that the phospholipid concentration of endogenous surfactant is approximately in the range between 15 and 50 mg/mL. However, most in vitro biophysical simulations of pulmonary surfactants were only capable of studying surfactant concentrations up to 3 mg/mL, one order of magnitude lower than the physiologically relevant concentration. Using a new in vitro biophysical model, called constrained drop surfactometry, in conjunction with atomic force microscopy and other technological advances, we have investigated the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. It was found that the effect of surfactant concentration on the dynamic surface activity of the surfactant film was only important when the surface area of the surfactant film varied no more than 15%, mimicking normal tidal breathing. The adsorbed surfactant film depicts a multilayer conformation consisting of a layer-by-layer assembly of stacked bilayers with the height of the multilayers proportional to the surfactant concentration. Our experimental data suggest that the biophysical function of these multilayer structures formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.NEW & NOTEWORTHY An in vitro biophysical model, called constrained drop surfactometry, was developed to study the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. These results suggest that the biophysical function of multilayers formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.

16.
Microb Pathog ; 176: 106017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736545

RESUMO

The primary replication site of Influenza A virus (IAV) is type II alveolar epithelial cells (AECII), which are central to normal lung function and present important immune functions. Surfactant components are synthesized primarily by AECII, which play a crucial role in host defense against infection. The aim of this study was to analyze if the impact of influenza infection is differential between A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) on costimulatory molecules and ProSP-C expression in AECII from BALB/c mice infected and A549 cell line infected with both strains. Pandemic A(H1N1)pdm09 and A/Victoria/3/75 (H3N2) were used to infect BALB/c mice and the A549 cell line. We evaluated the surface expression of co-stimulatory molecules (CD45/CD31/CD74/ProSP-C) in AECII and A549 cell lines. Our results showed a significant decrease in ProSP-C+ CD31- CD45- and CD74+ CD31- CD45- expression in AECII and A549 cell line with the virus strain A(H1N1)pdm09 versus A/Victoria/3/75 (H3N2) and controls (non-infection conditions). Our findings indicate that changes in the expression of ProSP-C in AECII and A549 cell lines in infection conditions could result in dysfunction leading to decreased lung compliance, increased work of breathing and increased susceptibility to injury.


Assuntos
Alphainfluenzavirus , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , Vírus da Influenza A Subtipo H3N2 , Tensoativos
17.
Environ Sci Technol ; 57(50): 21050-21060, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38055865

RESUMO

Microplastics (MPs) are ubiquitous environmental pollutants produced through the degradation of plastic products. Nanoplastics (NPs), commonly coexisting with MPs in the environment, are submicrometer debris incidentally produced from fragmentation of MPs. We studied the biophysical impacts of MPs/NPs derived from commonly used commercial plastic products on a natural pulmonary surfactant extracted from calf lung lavage. It was found that in comparison to MPs/NPs derived from lunch boxes made of polypropylene or from drinking water bottles made of poly(ethylene terephthalate), the MP/NP derived from foam packaging boxes made of polystyrene showed the highest adverse impact on the biophysical function of the pulmonary surfactant. Accordingly, intranasal exposure of MP/NP derived from the foam boxes also induced the most serious proinflammatory responses and lung injury in mice. Atomic force microscopy revealed that NP particles were adsorbed on the air-water surface and heteroaggregated with the pulmonary surfactant film. These results indicate that although the incidentally formed NPs only make up a small mass fraction, they likely play a predominant role in determining the nano-bio interactions and the lung toxicity of MPs/NPs by forming heteroaggregates at the alveolar-capillary interface. These findings may provide novel insights into understanding the health impact of MPs and NPs on the respiratory system.


Assuntos
Poluentes Ambientais , Surfactantes Pulmonares , Poluentes Químicos da Água , Animais , Camundongos , Microplásticos , Plásticos , Polipropilenos
18.
Environ Sci Technol ; 57(42): 15882-15891, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824199

RESUMO

The attractiveness and abundance of flavors are primary factors eliciting youth to use e-cigarettes. Emerging studies in recent years revealed the adverse health impact of e-cigarette flavoring chemicals, including disruption of the biophysical function of pulmonary surfactants in the lung. Nevertheless, a comprehensive understanding of the biophysical impact of various flavoring chemicals is still lacking. We used constrained drop surfactometry as a new alternative method to study the biophysical impact of flavored e-cigarette aerosols on an animal-derived natural pulmonary surfactant. The dose of exposure to e-cigarette aerosols was quantified with a quartz crystal microbalance, and alterations to the ultrastructure of the surfactant film were visualized using atomic force microscopy. We have systematically studied eight representative flavoring chemicals (benzyl alcohol, menthol, maltol, ethyl maltol, vanillin, ethyl vanillin, ethyl acetate, and ethyl butyrate) and six popular recombinant flavors (coffee, vanilla, tobacco, cotton candy, menthol/mint, and chocolate). Our results suggested a flavor-dependent inhibitory effect of e-cigarette aerosols on the biophysical properties of the pulmonary surfactant. A qualitative phase diagram was proposed to predict the hazardous potential of various flavoring chemicals. These results provide novel implications in understanding the environmental, health, and safety impacts of e-cigarette aerosols and may contribute to better regulation of e-cigarette products.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Mentol , Aromatizantes/análise , Aerossóis
19.
Cell Mol Biol Lett ; 28(1): 90, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936104

RESUMO

BACKGROUND: The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. METHOD: GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. RESULTS: Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. CONCLUSIONS: In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.


Assuntos
Surfactantes Pulmonares , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Corpos Lamelares , Lipídeos , Surfactantes Pulmonares/metabolismo , RNA , Tensoativos , Peixe-Zebra/metabolismo
20.
Immun Ageing ; 20(1): 58, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932771

RESUMO

BACKGROUND: The aging lung is a complex process and influenced by various stressors, especially airborne pathogens and xenobiotics. Additionally, a lifetime exposure to antigens results in structural and functional changes of the lung; yet an understanding of the cell type specific responses remains elusive. To gain insight into age-related changes in lung function and inflammaging, we evaluated 89 mouse and 414 individual human lung genomic data sets with a focus on genes mechanistically linked to extracellular matrix (ECM), cellular senescence, immune response and pulmonary surfactant, and we interrogated single cell RNAseq data to fingerprint cell type specific changes. RESULTS: We identified 117 and 68 mouse and human genes linked to ECM remodeling which accounted for 46% and 27%, respectively of all ECM coding genes. Furthermore, we identified 73 and 31 mouse and human genes linked to cellular senescence, and the majority code for the senescence associated secretory phenotype. These cytokines, chemokines and growth factors are primarily secreted by macrophages and fibroblasts. Single-cell RNAseq data confirmed age-related induced expression of marker genes of macrophages, neutrophil, eosinophil, dendritic, NK-, CD4+, CD8+-T and B cells in the lung of aged mice. This included the highly significant regulation of 20 genes coding for the CD3-T-cell receptor complex. Conversely, for the human lung we primarily observed macrophage and CD4+ and CD8+ marker genes as changed with age. Additionally, we noted an age-related induced expression of marker genes for mouse basal, ciliated, club and goblet cells, while for the human lung, fibroblasts and myofibroblasts marker genes increased with age. Therefore, we infer a change in cellular activity of these cell types with age. Furthermore, we identified predominantly repressed expression of surfactant coding genes, especially the surfactant transporter Abca3, thus highlighting remodeling of surfactant lipids with implications for the production of inflammatory lipids and immune response. CONCLUSION: We report the genomic landscape of the aging lung and provide a rationale for its growing stiffness and age-related inflammation. By comparing the mouse and human pulmonary genome, we identified important differences between the two species and highlight the complex interplay of inflammaging, senescence and the link to ECM remodeling in healthy but aged individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA