Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Microbiol ; 64(2): 402-408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010990

RESUMO

Bacterial Two component systems have evolved with many intricate sensory apparatuses for external stimuli like light, temperature, oxygen, pH and chemical compounds. Recent studies have shown the potential of two-component regulatory systems (TCSs) of bacteria in creating synthetic regulatory circuits for several applications. Antimicrobial resistance is increasing globally in both developing and developed countries and it is one of the foremost global threats to public health. The resistance level to a broad spectrum of antibiotics is rising every year by 5-10%. In this context, TCSs controlling microbial physiology at the transcriptional level could be an appropriate candidate for monitoring the antibiotics present in the environment. This review provided a wide opportunity to gain knowledge about the TCSs available in diverse species to sense the antibiotics. Further, this review explored the EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) based biosensors to repurpose the sensing modules from the microbial TCSs using the synthetic biology approach.

2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768620

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Humanos , Camundongos , Enterócitos , Infecções por Escherichia coli/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana , Fosfotransferases , Virulência/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-32232010

RESUMO

Response regulators are a critical part of the two-component system of gene expression regulation in bacteria, transferring a signal from a sensor kinase into DNA binding activity resulting in alteration of gene expression. In this study, we investigated a previously uncharacterized response regulator in Francisella novicida, FTN_1452 that we have named BfpR (Biofilm-regulating Francisella protein Regulator, FTN_1452). In contrast to another Francisella response regulator, QseB/PmrA, BfpR appears to be a negative regulator of biofilm production, and also a positive regulator of antimicrobial peptide resistance in this bacterium. The protein was crystallized and X-ray crystallography studies produced a 1.8 Å structure of the BfpR N-terminal receiver domain revealing interesting insight into its potential interaction with the sensor kinase. Structural analysis of BfpR places it in the OmpR/PhoP family of bacterial response regulators along with WalR and ResD. Proteomic and transcriptomic analyses suggest that BfpR overexpression affects expression of the critical Francisella virulence factor iglC, as well as other proteins in the bacterium. We demonstrate that mutation of bfpR is associated with an antimicrobial peptide resistance phenotype, a phenotype also associated with other response regulators, for the human cathelicidin peptide LL-37 and a sheep antimicrobial peptide SMAP-29. F. novicida with mutated bfpR replicated better than WT in intracellular infection assays in human-derived macrophages suggesting that the down-regulation of iglC expression in bfpR mutant may enable this intracellular replication to occur. Response regulators have been shown to play important roles in the regulation of bacterial biofilm production. We demonstrate that F. novicida biofilm formation was highly increased in the bfpR mutant, corresponding to altered glycogen synthesis. Waxworm infection experiments suggest a role of BfpR as a negative modulator of iglC expression with de-repression by Mg2+. In this study, we find that the response regulator BfpR may be a negative regulator of biofilm formation, and a positive regulator of antimicrobial peptide resistance in F. novicida.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Francisella/fisiologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Fatores de Virulência/genética , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Proteínas Sanguíneas/farmacologia , Catelicidinas/farmacologia , Farmacorresistência Bacteriana , Francisella/efeitos dos fármacos , Francisella/genética , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Mariposas/microbiologia , Mutação , Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA