Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 40(22): e108966, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34618370

RESUMO

Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.


Assuntos
Infecções por Alphavirus/virologia , Linfonodos/citologia , Receptores Imunológicos/metabolismo , Viremia/patologia , Alphavirus/patogenicidade , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Células de Kupffer/virologia , Linfonodos/virologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , RNA Viral/metabolismo , Receptores Imunológicos/genética , Análise de Célula Única , Viremia/virologia
2.
J Gen Virol ; 105(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38995674

RESUMO

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Assuntos
Infecções por Alphavirus , Alphavirus , Genótipo , Macaca fascicularis , RNA Viral , Viremia , Animais , Macaca fascicularis/virologia , Alphavirus/genética , Alphavirus/patogenicidade , Alphavirus/classificação , Alphavirus/isolamento & purificação , Infecções por Alphavirus/virologia , Infecções por Alphavirus/veterinária , Viremia/virologia , RNA Viral/genética , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Filogenia , Citocinas/genética , Citocinas/sangue
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547245

RESUMO

While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)-a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase-deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.


Assuntos
Alphavirus/genética , DNA Helicases/genética , N-Glicosil Hidrolases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas não Estruturais Virais/genética , Alphavirus/patogenicidade , Animais , Artrite/virologia , Culicidae/virologia , Encefalite/virologia , Exantema/virologia , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Proteínas de Ligação a RNA/genética
4.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507983

RESUMO

Arthritogenic alphaviruses are globally distributed, mosquito-transmitted viruses that cause rheumatological disease in humans and include Chikungunya virus (CHIKV), Mayaro virus (MAYV), and others. Although serological evidence suggests that some antibody-mediated heterologous immunity may be afforded by alphavirus infection, the extent to which broadly neutralizing antibodies that protect against multiple arthritogenic alphaviruses are elicited during natural infection remains unknown. Here, we describe the isolation and characterization of MAYV-reactive alphavirus monoclonal antibodies (mAbs) from a CHIKV-convalescent donor. We characterized 33 human mAbs that cross-reacted with CHIKV and MAYV and engaged multiple epitopes on the E1 and E2 glycoproteins. We identified five mAbs that target distinct regions of the B domain of E2 and potently neutralize multiple alphaviruses with differential breadth of inhibition. These broadly neutralizing mAbs (bNAbs) contain few somatic mutations and inferred germline-revertants retained neutralizing capacity. Two bNAbs, DC2.M16 and DC2.M357, protected against both CHIKV- and MAYV-induced musculoskeletal disease in mice. These findings enhance our understanding of the cross-reactive and cross-protective antibody response to human alphavirus infections.


Assuntos
Infecções por Alphavirus/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Amplamente Neutralizantes/imunologia , Alphavirus/imunologia , Alphavirus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Artrite/etiologia , Artrite/imunologia , Artrite/virologia , Anticorpos Amplamente Neutralizantes/isolamento & purificação , Anticorpos Amplamente Neutralizantes/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Vírus Chikungunya/patogenicidade , Reações Cruzadas , Epitopos/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Virol ; 96(6): e0006022, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107376

RESUMO

The impact of the host microbiota on arbovirus infections is currently not well understood. Arboviruses are viruses transmitted through the bites of infected arthropods, predominantly mosquitoes or ticks. The first site of arbovirus inoculation is the biting site in the host skin, which is colonized by a complex microbial community that could possibly influence arbovirus infection. We demonstrated that preincubation of arboviruses with certain components of the bacterial cell wall, including lipopolysaccharides (LPS) of some Gram-negative bacteria and lipoteichoic acids or peptidoglycan of certain Gram-positive bacteria, significantly reduced arbovirus infectivity in vitro. This inhibitory effect was observed for arboviruses of different virus families, including chikungunya virus of the Alphavirus genus and Zika virus of the Flavivirus genus, showing that this is a broad phenomenon. A modest inhibitory effect was observed following incubation with a panel of heat-inactivated bacteria, including bacteria residing on the skin. No viral inhibition was observed after preincubation of cells with LPS. Furthermore, a virucidal effect of LPS on viral particles was noticed by electron microscopy. Therefore, the main inhibitory mechanism seems to be due to a direct effect on the virus particles. Together, these results suggest that bacteria are able to decrease the infectivity of alphaviruses and flaviviruses. IMPORTANCE During the past decades, the world has experienced a vast increase in epidemics of alphavirus and flavivirus infections. These viruses can cause severe diseases, such as hemorrhagic fever, encephalitis, and arthritis. Several alpha- and flaviviruses, such as chikungunya virus, Zika virus, and dengue virus, are significant global health threats because of their high disease burden, their widespread (re-)emergence, and the lack of (good) anti-arboviral strategies. Despite the clear health burden, alphavirus and flavivirus infection and disease are not fully understood. A knowledge gap in the interplay between the host and the arbovirus is the potential interaction with host skin bacteria. Therefore, we studied the effect of (skin) bacteria and bacterial cell wall components on alphavirus and flavivirus infectivity in cell culture. Our results show that certain bacterial cell wall components markedly reduced viral infectivity by interacting directly with the virus particle.


Assuntos
Alphavirus , Arbovírus , Parede Celular , Flavivirus , Alphavirus/patogenicidade , Alphavirus/fisiologia , Animais , Arbovírus/patogenicidade , Arbovírus/fisiologia , Bactérias , Vírus Chikungunya , Flavivirus/patogenicidade , Flavivirus/fisiologia , Lipopolissacarídeos , Microbiota , Zika virus
6.
J Virol ; 96(6): e0175121, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34986000

RESUMO

The emergence of new epidemic variants of alphaviruses poses a public health risk. It is associated with adaptive mutations that often cause increased pathogenicity. Getah virus (GETV), a neglected and re-emerging mosquito-borne alphavirus, poses threat to many domestic animals and probably even humans. At present, the underlying mechanisms of GETV pathogenesis are not well defined. We identified a residue in the E2 glycoprotein that is critical for viral adsorption to cultured cells and pathogenesis in vivo. Viruses containing an arginine instead of a lysine at residue 253 displayed enhanced infectivity in mammalian cells and diminished virulence in a mouse model of GETV disease. Experiments in cell culture show that heparan sulfate (HS) is a new attachment factor for GETV, and the exchange Lys253Arg improves virus attachment by enhancing binding to HS. The mutation also results in more effective binding to glycosaminoglycan (GAG), linked to low virulence due to rapid virus clearance from the circulation. Localization of residue 253 in the three-dimensional structure of the spike revealed several other basic residues in E2 and E1 in close vicinity that might constitute an HS-binding site different from sites previously identified in other alphaviruses. Overall, our study reveals that HS acts as the attachment factor of GETV and provides convincing evidence for an HS-binding determinant at residue 253 in the E2 glycoprotein of GETV, which contributes to infectivity and virulence. IMPORTANCE Due to decades of inadequate monitoring and lack of vaccines and specific treatment, a large number of people have been infected with alphaviruses. GETV is a re-emerging alphavirus that has the potential to infect humans. This specificity of the GETV disease, particularly its propensity for chronic musculoskeletal manifestations, underscores the need to identify the genetic determinants that govern GETV virulence in the host. Using a mouse model, we show that a single amino acid substitution at residue 253 in the E2 glycoprotein causes attenuation of the virus. Residue 253 might be part of a binding site for HS, a ubiquitous attachment factor on the cell surface. The substitution of Lys by Arg improves cell attachment of the virus in vitro and virus clearance from the blood in vivo by enhancing binding to HS. In summary, we have identified HS as a new attachment factor for GETV and the corresponding binding site in the E2 protein for the first time. Our research potentially improved understanding of the pathogenic mechanism of GETV and provided a potential target for the development of new attenuated vaccines and antiviral drugs.


Assuntos
Infecções por Alphavirus , Alphavirus , Substituição de Aminoácidos , Proteínas do Envelope Viral , Alphavirus/genética , Alphavirus/patogenicidade , Infecções por Alphavirus/virologia , Animais , Sítios de Ligação/genética , Células Cultivadas , Modelos Animais de Doenças , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34435944

RESUMO

Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.


Assuntos
Infecções por Alphavirus , Alphavirus , Alphavirus/imunologia , Alphavirus/patogenicidade , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/virologia , Animais , Humanos , Vacinas Virais/imunologia
8.
PLoS Pathog ; 15(11): e1008089, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710653

RESUMO

Malnourishment, specifically overweight/obesity and undernourishment, affects more than 2.5 billion people worldwide, with the number affected ever-increasing. Concurrently, emerging viral diseases, particularly those that are mosquito-borne, have spread dramatically in the past several decades, culminating in outbreaks of several viruses worldwide. Both forms of malnourishment are known to lead to an aberrant immune response, which can worsen disease outcomes and reduce vaccination efficacy for viral pathogens such as influenza and measles. Given the increasing rates of malnutrition and spread of arthropod-borne viruses (arboviruses), there is an urgent need to understand the role of host nutrition on the infection, virulence, and transmission of these viruses. To address this gap in knowledge, we infected lean, obese, and undernourished mice with arthritogenic arboviruses from the genus Alphavirus and assessed morbidity, virus replication, transmission, and evolution. Obesity and undernourishment did not consistently influence virus replication in the blood of infected animals except for reductions in virus in obese mice late in infection. However, morbidity was increased in obese mice under all conditions. Using Mayaro virus (MAYV) as a model arthritogenic alphavirus, we determined that both obese and undernourished mice transmit virus less efficiently to mosquitoes than control (lean) mice. In addition, viral genetic diversity and replicative fitness were reduced in virus isolated from obese compared to lean controls. Taken together, nutrition appears to alter the course of alphavirus infection and should be considered as a critical environmental factor during outbreaks.


Assuntos
Aedes/virologia , Infecções por Alphavirus/etiologia , Infecções por Alphavirus/transmissão , Alphavirus/patogenicidade , Evolução Biológica , Estado Nutricional , Obesidade/virologia , Infecções por Alphavirus/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mosquitos Vetores/virologia , Obesidade/patologia , Virulência , Replicação Viral
9.
Arch Virol ; 166(2): 347-361, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410995

RESUMO

Mayaro fever is an infection caused by Mayaro virus (MAYV) that stands out among the neglected diseases transmitted by arthropods. Brazil is the country with the highest number of confirmed cases of MAYV infection. However, epidemiological surveillance studies conducted in Brazil are decentralized and focus on small outbreaks and unconfirmed cases. Thus, the aim of this review was to determine the general epidemiological profile of MAYV infections in Brazil. Several medical databases (i.e., PUBMED/MEDLINE, Scopus, Cochrane Library, LILACS, SciELO, and Biblioteca Virtual em Saúde) were searched for studies reporting cases of MAYV infections in Brazilian patients. Then, the rate of exposure to MAYV in Brazil was analyzed using RStudio® Software. We identified 37 studies published from 1957 to 2019, containing data of 12,374 patients from 1955 to 2018. The general rate of exposure to MAYV in Brazil was 10% (95% CI; 0.04-0.22), with 1,304 reported cases. The highest incidence of MAYV infection was found in the northern region (13%; 95% CI; 0.05-0.29), with 1,142 cases (88% of all cases). Furthermore, autochthonous MAYV cases have also been reported in the Central West (8%; 95% CI; 0.03-0.18) and Southeast (0.4%; 95% CI; 0.00-0.28). The states with the highest number of cases are Amazonas (490 cases), Pará (276 cases), and Goiás (87 cases). In conclusion, the general rate of exposure to MAYV in Brazil between 1955 and 2018 was considerable, especially in the Legal Amazon, in which 93% of cases were reported.


Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Alphavirus/patogenicidade , Animais , Brasil/epidemiologia , Surtos de Doenças , Humanos
10.
BMC Genomics ; 21(1): 388, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493246

RESUMO

BACKGROUND: Pancreas disease (PD) is a contagious disease caused by salmonid alphavirus (SAV) with significant economic and welfare impacts on salmon farming. Previous work has shown that higher resistance against PD has underlying additive genetic components and can potentially be improved through selective breeding. To better understand the genetic basis of PD resistance in Atlantic salmon, we challenged 4506 smolts from 296 families of the SalmoBreed strain. Fish were challenged through intraperitoneal injection with the most virulent form of the virus found in Norway (i.e., SAV3). Mortalities were recorded, and more than 900 fish were further genotyped on a 55 K SNP array. RESULTS: The estimated heritability for PD resistance was 0.41 ± 0.017. The genetic markers on two chromosomes, ssa03 and ssa07, showed significant associations with higher disease resistance. Collectively, markers on these two QTL regions explained about 60% of the additive genetic variance. We also sequenced and compared the cardiac transcriptomics of moribund fish and animals that survived the challenge with a focus on candidate genes within the chromosomal segments harbouring QTL. Approximately 200 genes, within the QTL regions, were found to be differentially expressed. Of particular interest, we identified various components of immunoglobulin-heavy-chain locus B (IGH-B) on ssa03 and immunoglobulin-light-chain on ssa07 with markedly higher levels of transcription in the resistant animals. These genes are closely linked to the most strongly QTL associated SNPs, making them likely candidates for further investigation. CONCLUSIONS: The findings presented here provide supporting evidence that breeding is an efficient tool for increasing PD resistance in Atlantic salmon populations. The estimated heritability is one of the largest reported for any disease resistance in this species, where the majority of the genetic variation is explained by two major QTL. The transcriptomic analysis has revealed the activation of essential components of the innate and the adaptive immune responses following infection with SAV3. Furthermore, the complementation of the genomic with the transcriptomic data has highlighted the possible critical role of the immunoglobulin loci in combating PD virus.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/patogenicidade , Resistência à Doença , Doenças dos Peixes/virologia , Pancreatopatias/virologia , Característica Quantitativa Herdável , Salmo salar/genética , Infecções por Alphavirus/genética , Infecções por Alphavirus/mortalidade , Animais , Mapeamento Cromossômico , Doenças dos Peixes/genética , Doenças dos Peixes/mortalidade , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ligação Genética , Marcadores Genéticos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Miocárdio/química , Noruega , Pancreatopatias/genética , Pancreatopatias/mortalidade , Pancreatopatias/veterinária , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Análise de Sequência de RNA
11.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463969

RESUMO

Alphaviruses are small enveloped RNA viruses that bud from the host cell plasma membrane. Alphavirus particles have a highly organized structure, with a nucleocapsid core containing the RNA genome surrounded by the capsid protein, and a viral envelope containing 80 spikes, each a trimer of heterodimers of the E1 and E2 glycoproteins. The capsid protein and envelope proteins are both arranged in organized lattices that are linked via the interaction of the E2 cytoplasmic tail/endodomain with the capsid protein. We previously characterized the role of two highly conserved histidine residues, H348 and H352, located in an external, juxtamembrane region of the E2 protein termed the D-loop. Alanine substitutions of H348 and H352 inhibit virus growth by impairing late steps in the assembly/budding of virus particles at the plasma membrane. To investigate this budding defect, we selected for revertants of the E2-H348/352A double mutant. We identified eleven second-site revertants with improved virus growth and mutations in the capsid, E2 and E1 proteins. Multiple isolates contained the mutation E2-T402K in the E2 endodomain or E1-T317I in the E1 ectodomain. Both of these mutations were shown to partially restore H348/352A growth and virus assembly/budding, while neither rescued the decreased thermostability of H348/352A. Within the alphavirus particle, these mutations are positioned to affect the E2-capsid interaction or the E1-mediated intertrimer interactions at the 5-fold axis of symmetry. Together, our results support a model in which the E2 D-loop promotes the formation of the glycoprotein lattice and its interactions with the internal capsid protein lattice.IMPORTANCE Alphaviruses include important human pathogens such as Chikungunya and the encephalitic alphaviruses. There are currently no licensed alphavirus vaccines or effective antiviral therapies, and more molecular information on virus particle structure and function is needed. Here, we highlight the important role of the E2 juxtamembrane D-loop in mediating virus budding and particle production. Our results demonstrated that this E2 region affects both the formation of the external glycoprotein lattice and its interactions with the internal capsid protein shell.


Assuntos
Alphavirus/fisiologia , Capsídeo/metabolismo , Alphavirus/patogenicidade , Infecções por Alphavirus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Glicoproteínas/metabolismo , Humanos , Membranas/metabolismo , Nucleocapsídeo/metabolismo , Sindbis virus/genética , Proteínas do Envelope Viral/genética , Montagem de Vírus , Liberação de Vírus
12.
PLoS Pathog ; 14(1): e1006835, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377936

RESUMO

Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.


Assuntos
Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Alphavirus/fisiologia , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alphavirus/patogenicidade , Animais , Células Cultivadas , Cricetinae , Ativação Enzimática , Glicólise/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ross River virus/fisiologia , Vírus da Floresta de Semliki/fisiologia , Virulência
13.
Nucleic Acids Res ; 46(7): 3657-3670, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361131

RESUMO

Alphaviruses are mosquito-borne pathogens that cause human diseases ranging from debilitating arthritis to lethal encephalitis. Studies with Sindbis virus (SINV), which causes fever, rash, and arthralgia in humans, and Venezuelan equine encephalitis virus (VEEV), which causes encephalitis, have identified RNA structural elements that play key roles in replication and pathogenesis. However, a complete genomic structural profile has not been established for these viruses. We used the structural probing technique SHAPE-MaP to identify structured elements within the SINV and VEEV genomes. Our SHAPE-directed structural models recapitulate known RNA structures, while also identifying novel structural elements, including a new functional element in the nsP1 region of SINV whose disruption causes a defect in infectivity. Although RNA structural elements are important for multiple aspects of alphavirus biology, we found the majority of RNA structures were not conserved between SINV and VEEV. Our data suggest that alphavirus RNA genomes are highly divergent structurally despite similar genomic architecture and sequence conservation; still, RNA structural elements are critical to the viral life cycle. These findings reframe traditional assumptions about RNA structure and evolution: rather than structures being conserved, alphaviruses frequently evolve new structures that may shape interactions with host immune systems or co-evolve with viral proteins.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , RNA/genética , Sindbis virus/genética , Replicação Viral/genética , Alphavirus/química , Alphavirus/genética , Alphavirus/patogenicidade , Animais , Encefalite/genética , Encefalite/virologia , Vírus da Encefalite Equina Venezuelana/química , Vírus da Encefalite Equina Venezuelana/patogenicidade , Genoma Viral/genética , Cavalos/virologia , Humanos , Conformação de Ácido Nucleico , RNA/química , Sindbis virus/química , Sindbis virus/patogenicidade
14.
Emerg Infect Dis ; 25(6): 1252-1254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107236

RESUMO

We isolated Getah virus from infected foxes in Shandong Province, eastern China. We sequenced the complete Getah virus genome, and phylogenetic analysis revealed a close relationship with a highly pathogenic swine epidemic strain in China. Epidemiologic investigation showed that pigs might play a pivotal role in disease transmission to foxes.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/patogenicidade , Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Raposas/virologia , Alphavirus/classificação , Alphavirus/genética , Alphavirus/ultraestrutura , Doenças dos Animais/história , Doenças dos Animais/transmissão , Animais , China/epidemiologia , História do Século XXI , Filogenia , Vigilância em Saúde Pública , RNA Viral , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia
15.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167335

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, ß-d-N4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that ß-d-N4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 µM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.


Assuntos
Alphavirus/patogenicidade , Antivirais/farmacologia , Citidina/análogos & derivados , Mutação , Alphavirus/efeitos dos fármacos , Alphavirus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Citidina/farmacologia , Genoma Viral/efeitos dos fármacos , Humanos , Ribavirina/farmacologia , Células Vero , Carga Viral , Proteínas não Estruturais Virais/genética
16.
PLoS Pathog ; 12(12): e1006061, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977778

RESUMO

Alphaviruses are highly organized enveloped RNA viruses with an internal nucleocapsid surrounded by a membrane containing the E2 and E1 transmembrane proteins. Alphavirus budding takes place at the plasma membrane and requires the interaction of the cytoplasmic domain of E2 with the capsid protein. Here we used WT alphaviruses and Sindbis virus in which E2 was fused to a fluorescent protein to characterize virus exit from host cells. Our results show that alphavirus infection induced striking modifications of the host cell cytoskeleton and resulted in the formation of stable intercellular extensions that emanated exclusively from the infected cell. The intercellular extensions were long (> 10 µM), contained actin and tubulin, and formed flattened contacts with neighboring cells, but did not mediate membrane or cytoplasmic continuity between cells. Receptor down-regulation studies indicated that formation of stable extensions did not require the virus receptor, and that extensions promoted cell-to-cell virus transmission to receptor-depleted cells. Virus mutant experiments demonstrated that formation of extensions required the E2-capsid interaction but not active particle budding, while intercellular transmission of infection required the production of fusion-active virus particles. Protein expression studies showed that even in the absence of virus infection, the viral structural proteins alone induced intercellular extensions, and that these extensions were preferentially targeted to non-expressing cells. Together, our results identify a mechanism for alphavirus cell-to-cell transmission and define the key viral protein interactions that it requires.


Assuntos
Infecções por Alphavirus/transmissão , Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas do Envelope Viral/metabolismo , Alphavirus/patogenicidade , Animais , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
17.
Cell Mol Life Sci ; 73(20): 3897-916, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27117550

RESUMO

Alphavirus budding is driven by interactions between nucleocapsids assembled in the cytoplasm and envelope proteins present at the plasma membrane. So far, the expression of capsid and envelope proteins in infected cells has been considered an absolute requirement for alphavirus budding and propagation. In the present study, we show that Semliki Forest virus and Sindbis virus lacking the capsid gene can propagate in mammalian and insect cells. This propagation is mediated by the release of infectious microvesicles (iMVs), which are pleomorphic and have a larger size and density than wild-type virus. iMVs, which contain viral RNA inside and viral envelope proteins on their surface, are released at the plasma membrane and infect cells using the endocytic pathway in a similar way to wild-type virus. iMVs are not pathogenic in immunocompetent mice when injected intravenously, but can infect different organs like lungs and heart. Finally, we also show that alphavirus genomes without capsid can mediate the propagation of heterologous genes, making these vectors potentially interesting for gene therapy or vaccination studies. The minimalist infectious system described in this study shows that a self-replicating RNA able to express membrane proteins with binding and fusion properties is able to propagate, providing some insights into virus evolution.


Assuntos
Alphavirus/patogenicidade , Capsídeo/metabolismo , Membrana Celular/virologia , Micropartículas Derivadas de Células/virologia , Alphavirus/genética , Animais , Fusão Celular , Linhagem Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Feminino , Genoma Viral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Testes de Neutralização , RNA Viral/metabolismo , Vírus da Floresta de Semliki/patogenicidade , Transfecção , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo
18.
J Gen Virol ; 97(6): 1283-1296, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27028153

RESUMO

Alphaviruses are enveloped viruses with a positive-stranded RNA genome, of the family Togaviridae. In mammals and birds they are mosquito-transmitted and are of veterinary and medical importance. They cause primarily two types of disease: encephalitis and polyarthritis. Here we review attempts to understand the molecular basis of encephalitis and virulence for the central nervous system (CNS) in mouse models. Sindbis virus (SINV) was the first virus to be studied in this way. Other viruses analysed are Semliki Forest virus (SFV), Venezuelan equine encephalitis virus, Eastern equine encephalitis virus and Western equine encephalitis virus. Neurovirulence was found to be associated with damage to neurons in the CNS. It mapped mainly to the E2 region of the genome, and to the nsP3 gene. Also, avirulent natural isolates of both SINV and SFV have been found to have more rapid cleavage of nonstructural proteins due to mutations in the nsP1-nsP2 cleavage site. Immune-mediated demyelination for avirulent SFV has been shown to be associated with infection of oligodendrocytes. For Chikungunya virus, an emerging alphavirus that uncommonly causes encephalitis, analysis of the molecular basis of CNS pathogenicity is beginning. Experiments on SINV and SFV have indicated that virulence may be related to the resistance of virulent virus to interferon action. Although the E2 protein may be involved in tropism for neurons and passage across the blood-brain barrier, the role of the nsP3 protein during infection of neurons is unknown. More information in these areas may help to further explain the neurovirulence of alphaviruses.


Assuntos
Alphavirus/patogenicidade , Encefalite Viral/patologia , Encefalite Viral/virologia , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Humanos , Evasão da Resposta Imune , Virulência
19.
J Virol ; 89(16): 8280-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041298

RESUMO

UNLABELLED: Susceptibility to alphavirus encephalomyelitis is dependent on a variety of factors, including the genetic background of the host. Neuroadapted Sindbis virus (NSV) causes uniformly fatal disease in adult C57BL/6 (B6) mice, but adult BALB/c (Bc) mice recover from infection. In B6 mice, fatal encephalomyelitis is immune mediated rather than a direct result of virus infection. To identify the immunological determinants of host susceptibility to fatal NSV-induced encephalomyelitis, we compared virus titers and immune responses in adult B6 and Bc mice infected intranasally with NSV. B6 mice had higher levels of virus replication, higher levels of type I interferon (IFN), and slower virus clearance than did Bc mice. B6 mice had more neuronal apoptosis, more severe neurologic disease, and higher mortality than Bc mice. B6 mice had more infiltration of inflammatory cells and higher levels of IL1b, IL-6, TNFa, Csf2, and CCL2 mRNAs and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IFN-γ, and C-C motif ligand 2 (CCL2) protein in brains than Bc mice. However, Bc mice had more brain antibody at day 7 and a higher percentage of CD4(+) T cells. CD4(+) T cells in the brains of Bc mice included fewer Th17 cells and more regulatory T cells (Tregs) producing IL-10 than B6 mice, accompanied by higher levels of Il2 and Cxcl10 mRNAs. In the absence of IL-10, resistant Bc mice became susceptible to fatal encephalomyelitis after NSV infection. These studies demonstrate the importance of the immune response and its regulation in determining host survival during alphavirus encephalomyelitis. IMPORTANCE: Mosquito-borne alphavirus infections are an important cause of encephalomyelitis in humans. The severity of disease is dependent both on the strain of the virus and on the age and genetic background of the host. A neurovirulent strain of Sindbis virus causes immune-mediated fatal encephalomyelitis in adult C57BL/6 mice but not in BALB/c mice. To determine the host-dependent immunological mechanisms underlying the differences in susceptibility between these two strains of mice, we compared their immune responses to infection. Resistance to fatal disease in BALB/c mice was associated with better antibody responses, more-rapid virus clearance, fewer Th17 cells, and more-potent regulatory T cell responses than occurred in susceptible C57BL/6 mice. In the absence of interleukin-10, a component of the regulatory immune response, resistant mice became susceptible to lethal disease. This study demonstrates the importance of the immune response and its regulation for host survival during alphavirus encephalomyelitis.


Assuntos
Alphavirus/patogenicidade , Suscetibilidade a Doenças/imunologia , Encefalomielite/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Citocinas/genética , Encefalomielite/virologia , Expressão Gênica , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Virulência
20.
Vet Res ; 47: 7, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743442

RESUMO

Salmonid alphavirus (SAV) is an enveloped, single-stranded, positive sense RNA virus belonging to the family Togaviridae. It causes economically devastating disease in cultured salmonids. The characteristic features of SAV infection include severe histopathological changes in the heart, pancreas and skeletal muscles of diseased fish. Although the presence of virus has been reported in a wider range of tissues, the mechanisms responsible for viral tissue tropism and for lesion development during the disease are not clearly described or understood. Previously, we have described membrane-dependent morphogenesis of SAV and associated apoptosis-mediated cell death in vitro. The aims of the present study were to explore ultrastructural changes associated with SAV infection in vivo. Cytolytic changes were observed in heart, but not in gill and head-kidney of virus-infected fish, although they still exhibited signs of SAV morphogenesis. Ultrastructural changes associated with virus replication were also noted in leukocytes in the head kidney of virus-infected fish. These results further describe the presence of degenerative lesions in the heart as expected, but not in the gills and in the kidney.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/patogenicidade , Doenças dos Peixes/virologia , Salmo salar , Alphavirus/fisiologia , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Doenças dos Peixes/patologia , Brânquias/ultraestrutura , Brânquias/virologia , Coração/virologia , Rim/ultraestrutura , Rim/virologia , Mitocôndrias Cardíacas , Miocárdio/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA