RESUMO
Spice adulteration using yellow lead chromate-based pigments has been documented as a growing global health concern. Spices from the Republic of Georgia with extremely high levels of lead, up to an order of magnitude higher than any other spices worldwide, have been implicated as sources of child lead poisoning. The objectives of this study were to 1) evaluate lead concentrations in spices sampled across the country of Georgia between 2020 and 2022, and 2) assess factors associated with spice adulteration, specifically the role of spice quality and regulatory enforcement. Spice samples were collected from 29 cities nationwide. The most populous cities were selected in each administrative region as well as those of importance to the spice supply chain. Sampling was carried out at the largest spice bazaars in each city. The regions of Adjara and Imereti were the focus of qualitative interviews conducted in 2021 with key businesspeople selling spices with very high and low levels of lead. The same cities and bazaars were visited at each of three sampling periods between 2020 and 2022. In total, 765 spice samples were collected. Lead concentrations in spices decreased over time, with a maximum of 14,233 µg/g in 2020 down to 36 µg/g in the final sampling round of 2022. A logistic regression determined that sampling round, region and spice type were associated with elevated lead in samples. Samples from Adjara and those containing marigold had the highest lead levels. Interviews with eighteen prominent spice vendors revealed difficulties sourcing sufficient quantities of high quality, brightly colored marigold, and concerns about adulteration. Interviews with two authorities from the National Food Authority highlighted the increased attention on regulating lead in spices since 2018. Continued monitoring and periodic regulatory enforcement may adequately disincentivize further adulteration with lead chromate in the spice industry in Georgia.
Assuntos
Chumbo , Especiarias , Chumbo/análise , Especiarias/análise , República da Geórgia , Contaminação de Alimentos/análise , Humanos , Monitoramento Ambiental , CidadesRESUMO
Spices are food flavouring agents that are highly used in Iraq. However, they may be contaminated by toxicogenic fungi and subsequent production of mycotoxins. The aim of this study was to investigate the contamination of commonly used spices with fungi using polymerase chain reaction (PCR) assay and to detect fungal mycotoxin using high-performance liquid chromatography. Thirty-five spices (seven samples from each black pepper, red pepper, turmeric, cumin and ginger) were cultured on an appropriate medium to identify various fungi species. Later on, the toxigenicity of Aspergillus flavus and Aspergillus niger was determined using a PCR assay. The fungal mycotoxins, including aflatoxins and ochratoxins, were then determined through a high-performance liquid chromatography using the validated Quick, Easy, Cheap, Effective, Rugged, and Safe (QuECHERS) method. Aspergillus species were the predominantly isolated fungi, followed by Penicillium and Fusarium. The PCR results indicate the high toxigenicity of A. flavus as 85.7% of the strains had aflQ/aflR genes and 79% had PKS15KS/PKS15C-MeT genes. Regarding mycotoxin contamination in spices, the highest rates of aflatoxins and ochratoxins were found in black pepper (5.913 µg/kg) and red chilli (6.9055 µg/kg), respectively. Spices are susceptible substrates for the growth of mycotoxigenic fungi. Thus, regular effective surveillance and quality control procedures are highly recommended.
Assuntos
Fungos , Micotoxinas , Especiarias , Especiarias/análise , Especiarias/microbiologia , Micotoxinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Fungos/genética , Fungos/isolamento & purificação , Fungos/química , Fungos/classificação , Fungos/metabolismo , Reprodutibilidade dos Testes , Limite de Detecção , Reação em Cadeia da Polimerase/métodos , Modelos LinearesRESUMO
Spices enhance food's colour, aroma and palatability. The main objective of this study was to assess the levels of heavy metals in the most common spices used in Ghanaian and worldwide cuisines. Ninety samples were obtained directly from local marketplaces in the Accra Metropolis (Madina, Kaneshie and Makola). After microwave digestion, the samples' levels of arsenic, iron, lead, cadmium and zinc were measured using an inductively coupled plasma-mass spectrometer (ICP-MS). Iron, zinc, arsenic, cadmium and lead levels in specified natural spices varied from 0.022 mg/kg to 5.814 mg/kg, 0.056 mg/kg to 0.895 mg/kg, not detected to 14.012 mg/kg, 0.02 mg/kg to 0.45 mg/kg and not detected to 3.583 mg/kg, respectively. The toxic metals arsenic and lead in turmeric powder, whole rosemary and garlic, as well as lead in ginger, were slightly above the Codex, but below the FAO/WHO permissible level. All spices in this study had THQ and HI values of less than one, indicating that consumers will experience no potential health hazards from consuming specific metals through spices. However, continual scrutiny should be maintained over time due to bioaccumulation in humans.
Assuntos
Metais Pesados , Especiarias , Gana , Especiarias/análise , Metais Pesados/análise , Humanos , Contaminação de Alimentos/análise , Oligoelementos/análise , Chumbo/análise , Arsênio/análise , Cádmio/análiseRESUMO
The volatile organic compounds of six spices, including black pepper, dried ginger, cinnamon, fennel, clove, and zanthoxylum, were analyzed by gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA) and Euclidean distance. In further analyses, the effects of volatile oils in six spices on ulcerative colitis were assayed in a zebrafish model induced by 3-nitrobenzenesulfonic acid. A total of 120 kinds of volatile organic compounds were detected and 80 among them were identified, which included 10 common components and 3 to 24 characteristic components belonging to different spices. The major VOCs in six spices were estimated to be terpenes with the contents of 45.02%, 56.87%, 36.68%, 58.19%, 68.68%, and 30.62%, respectively. Meanwhile, the volatile components of fennel, dried ginger, black pepper, and cinnamon are quite similar, but differ from clove and zanthoxylum. The volatile oils in six spices presented efficient activity to improve ulcerative colitis which can decrease the number of neutrophils, restore the structure of intestinal epithelial and the morphology of the epithelial cells. Our study achieved rapid analysis of the volatile organic compounds and flavors in six spices and further revealed the potential health benefits of their volatile oils on ulcerative colitis, especially for clove and zanthoxylum. This study is expected to provide certain data support for the quality evaluation and the potential use in functional foods of six spices.
Assuntos
Colite Ulcerativa , Especiarias , Compostos Orgânicos Voláteis , Peixe-Zebra , Colite Ulcerativa/induzido quimicamente , Especiarias/análise , Compostos Orgânicos Voláteis/análise , Animais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Modelos Animais de Doenças , Análise de Componente Principal , Zanthoxylum/química , Cinnamomum zeylanicum/químicaRESUMO
Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat content was similar among the samples (13%), with monounsaturated fatty acids being predominant. The coriander and mystical cumin seeds were extremely rich in C18:1n9c (81 and 85%, respectively) while, in the caraway, C18:1n12 (25%) was found together with C18:1n9c (32%). The caraway seeds also presented a higher proportion of C18:2n6c (34%) than the other seeds (13 and 8%, correspondingly). γ-Tocotrienol was the major vitamin E form in all the samples. The caraway seeds contained double the amount of protein (~18%) compared to the other seeds (~8%) but, qualitatively, the amino acid profiles among all seeds were similar. The seeds were also rich in dietary fiber (40-53%); however, differences were found in their fiber profiles. Caraway showed the highest antioxidant profile and anti-inflammatory activity and an LC-DAD-ESI/MSn analysis revealed great differences in the phenolic profiles of the samples. Cytotoxicity (NCI-H460, AGS, MCF-7, and CaCo2) and hepatotoxicity (RAW 264.7) were not observed. In sum, besides their flavoring/preservation properties, these seeds are also relevant source of bioactive compounds with health-promoting activities.
Assuntos
Anti-Inflamatórios , Antioxidantes , Coriandrum , Compostos Fitoquímicos , Especiarias , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Coriandrum/química , Especiarias/análise , Marrocos , Cuminum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/químicaRESUMO
BACKGROUND: As a result of its correlation with cardiovascular diseases, salt intake must be reduced. According to multi-sensory integration, aroma plays an important role in saltiness enhancement; this could enable a food's salt content to be reduced without losing acceptance. We therefore studied the effect of three spices, Curcuma longa, Laurus nobilis L. and Petroselinum crispum L., on saltiness enhancement through sensory tests on consumers. This was followed by olfactometric analysis with the aim of relating the effect to the spices' aromatic composition. RESULTS: According to the odour-induced salty taste enhancement (OISE) mean values, bay leaf and turmeric had the highest effect on saltiness enhancement, at a similar level to dry-cured ham aroma, wherwas parsley had a significantly lower OISE value. Only one odour-active compound (OAC), eugenol, showed a direct correlation with the spices' OISE values. Turmeric primarily had OACs with sweet aroma, whereas bay leaf had more OACs belonging to the spicy-aroma category. CONCLUSION: The three spices, turmeric, bay leaf and parsley, investigated in the present study appear to enhance the salty taste of mashed potato with a low salt content. The results suggest that an interaction effect among OACs with different aromatic ranges may exist. Therefore, when the global OAC modified frequency value, grouped according to aroma range, was considered, the sweet range appears to counteract the effect of the spicy aroma on saltiness. © 2024 Society of Chemical Industry.
Assuntos
Odorantes , Cloreto de Sódio na Dieta , Cloreto de Sódio na Dieta/análise , Odorantes/análise , Preferências Alimentares , Paladar , Percepção Gustatória , Cloreto de Sódio/análise , Especiarias/análiseRESUMO
This communication describes a few functional seeds and spices, commonly consumed in South Asia, which may impair the absorption of drugs that are used in diabetes and medical management. The aim of this article is to highlight the possibility of these foods having a 'dysfunctional', rather than functional effect on health. Physicians should include questions about the use of these spices in their history taking.
Assuntos
Diabetes Mellitus , Alimento Funcional , Humanos , Especiarias/análise , SementesRESUMO
In the face of the COVID-19 pandemic, many people around the world have increased their healthy behaviors to prevent transmission of the virus and potentially improve their immune systems. Therefore, the role of diet and food compounds such as spices with bioactive and antiviral properties may be important in these efforts. In this chapter, we review the efficacy of spices such as turmeric (curcumin), cinnamon, ginger, black pepper, saffron, capsaicin, and cumin by investigating the effects of these compounds of COVID-19 disease severity biomarkers.
Assuntos
COVID-19 , Curcumina , Humanos , Especiarias/análise , Pandemias , Capsaicina/uso terapêutico , Curcumina/uso terapêuticoRESUMO
Spices and herbs have been used since ancient times as flavor and aroma enhancers, colorants, preservatives and traditional medicines. As many other plant products, they can be exposed to contaminants, ones of which are mycotoxins, secondary metabolites of fungi. Such contamination can occur during harvesting, processing and storage, distribution, retailing and consumer use. Although they are used and consumed in small quantities, but added to a wide variety of products, especially ready-to-eat products. So the assessment of their contamination with mycotoxins is very important. The aim of the study was to investigate the contamination of spices and herbs with mycotoxins of fungi of the genera Aspergillus, Penicillium, Fusarium and Alternaria, as well as to assess the mycotoxins intake per person when consuming these food groups. Material and methods. Concentration of mycotoxins in 155 samples of spices and herbs was determined by ultra high-performance liquid chromatography coupled to tandem mass-spectrometric detection (UHPLC-MS/MS). The list of mycotoxins included deoxynivalenol, aflatoxins, ochratoxin A, zearalenone, T-2 toxin, fumonisins, sterigmatocistin, HT-2 toxin, diacetoxyscirpenol, enniatins, beauvericin, neosolaniol, citreoviridin, mycophenolic acid, citrinin, tentoxin, altenuene, alternariol and its monomethyl ether. Results. Among the regulated in plant products mycotoxins in the studied samples there were found aflatoxins (B1 - in 19% of samples, from 0.4 to 48.2 µg/kg, B2 - 8%, from < limit of quantitation (LOQ) to 3.2 µg/kg, G1 - 2%, 0.75-21 µg/kg, G2 - 5%, 0.5- 12.5 µg/kg), ochratoxin A (15% samples, 0.8-14 µg/kg), fumonisin B1 (8%, 16.1-722.6 µg/kg), and fumonisin B2 (14%, < LOQ - 79.6 µg/kg). T-2 toxin and deoxynivalenol were found in 10% of samples (< LOQ - 6.5 µg/kg and < LOQ - 65.5 µg/kg respectively), zearalenone - in 4 samples (1.7-106.2 µg/kg), HT-2 toxin - in 8 samples (5.4-19.8 µg/kg). Among little-studied (emergent) mycotoxins in the spices and herbs samples there were found tentoxin (in 36% of samples, in an amount from 0.7 to 10.9 µg/kg), altenuene (in 8%, 14.5-161.5 µg/kg). 10% of the samples were contaminated with alternariol and its methyl ether (from less than LOQ to 12.8 and < LOQ to 55.7 µg/kg, respectively), 4% - with sterigmatocystin (0.4-7.8 µg/kg), 5% - mycophenolic acid (13.1-297 µg/kg), 2% of the samples were contaminated with citrinin and enniatin B (< LOQ - 27.7 and 0.1-1 µg/kg), in 9 samples (6%) beauvericin was detected (< LOQ - 1.7 µg/kg). Over 60% of samples were contaminated with more than one mycotoxin. The content of aflatoxin B1 exceeded the maximum permissible level set in the EU (5 µg/kg) in nine samples. Conclusion. To the best of our knowledge, the present study is the first in the Russian Federation to report results indicating to the contamination of spices and herbs with mycotoxins. High occurrence of aflatoxins, tentoxin, ochratoxin A and fumonisin B2 has been observed. In calculating the potential exposure of mycotoxins, the possibility of high levels of aflatoxin B1 intake have been shown to be possible, which could lead to a public health risk when consuming contaminated spices, herbs and foods containing them.
Assuntos
Aflatoxinas , Citrinina , Micotoxinas , Toxina T-2 , Zearalenona , Humanos , Micotoxinas/análise , Toxina T-2/análise , Zearalenona/análise , Espectrometria de Massas em Tandem/métodos , Citrinina/análise , Aflatoxina B1/análise , Especiarias/análise , Ácido Micofenólico/análise , Aflatoxinas/análise , Contaminação de Alimentos/análiseRESUMO
Spices are widely used in daily life such as diet and have certain activity. Especially in China, spices have been mainly used as condiments for thousands of years in order to improve the sensory quality of food; in addition, they and their derivatives can also be used as preservatives. In this study, three spices with unique Chinese characteristics widely used were selected: cassia bark (bark of Cinnamomum camphora Presl), bay fruits (Laurus nobilis), and cloves (Syzygiumaromaticum). The main components and antibacterial ability of these three spices were analyzed by simulated extraction method. Through headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) analysis, it was determined that the main active compounds in the essential oils of cassia bark, bay fruits and cloves were cinnamaldehyde (78.11%), cinnamaldehyde (61.78%) and eugenol (75.23%), respectively. The agar plate diffusion test and the simulated food culture medium experiment confirmed that the essential oils extracted from the three flavors have antibacterial effects on Listeria monocytogenes, Listeria innocua, Listeria welshimeri, Listeria ivanovii, Listeria grayi and Vibrio parahaemolyticus. The antibacterial activity of different strains has different optimal extraction conditions. Generally speaking, cinnamon essential oil has the strongest antibacterial activity, while laurel fruit has the lowest antibacterial activity. The study proved the antibacterial activity of these three Chinese-specific spices and provided some new ideas and methods for the subsequent research and preparation of natural food additives and food antibacterial agents.
Assuntos
Antibacterianos , Óleos Voláteis , Óleos de Plantas , Especiarias , Ágar , Antibacterianos/farmacologia , Cassia/química , Cinnamomum aromaticum/química , Eugenol/análise , Aditivos Alimentares , Frutas/química , Óleos Voláteis/farmacologia , Casca de Planta/química , Especiarias/análise , Syzygium/química , Óleos de Plantas/farmacologiaRESUMO
Edible and highly demanded plant-derived products such as herbs, spices, and tea may be subjected to exogenous contamination of well-known chemical hazards such as persistent organic pollutants (POPs), and emerging ones such as plasticizers, affecting negatively the safety of these food commodities. This fact has led to the increasing analysis of exogenous compounds including priority POPs such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs), as well as highly persistent polycyclic aromatic hydrocarbons (PAHs). Currently, plasticizer residues are also considered an emerging issue because of the extensive use in food packaging and potential migration into foodstuffs. In this review, the studies published from 2010 to 2020 were discussed, including the main extraction methods applied for these contaminants from herbs, spices, and tea, and it was revealed the trend toward the use of less solvent-consuming and time-effective methods. Chromatographic methods were also described, which were mainly combined with detection techniques such as classical or mass spectrometry (MS) detection. Finally, a comprehensive overview of the occurrence of these selected exogenous compounds was presented in the studied matrices, showing that their monitoring should be further investigated to ensure food safety of highly consumed condiments and tea.
Assuntos
Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Dibenzofuranos/análise , Dibenzofuranos Policlorados/análise , Monitoramento Ambiental/métodos , Poluentes Orgânicos Persistentes , Plastificantes/análise , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Especiarias/análise , CháRESUMO
Lead adulteration of spices, primarily via Pb chromate compounds, has been documented globally as a growing public health concern. Currently, Pb detection in spices relies primarily on expensive and time-consuming laboratory analyses. Advancing rapid Pb detection methods, inclusive of their accuracy and precision, would improve field assessments by food safety inspectors, stakeholders, and the public in the hope of reducing Pb exposure risks at its source. Here, we present two field procedures for Pb detection: portable X-ray fluorescence analysis (pXRF) and a simple colorimetric test. We assess their efficacy to detect Pb and its chemical form in seven spice types, including powders, spice-salt mixtures, and dried roots, compared to the proven laboratory technique, inductively coupled plasma mass spectrometry (ICP-MS). Lead concentrations measured using pXRF and ICP-MS were within 5% of each other for spice powders and 24% for dried roots. By pXRF, spice samples were analyzed within collection plastic bags without preparation, resulting in a detection limit of 2 mg Pb/kg for spice powders, which is comparable to national food standards. The colorimetric test utilized here targets hexavalent chromium, making the method selective to Pb chromate adulteration assuming that this is its dominant source in spices. Color development, and thus detection, was observed when Pb concentrations exceeded approximately 5-70 mg/kg in dried turmeric roots and 1000 mg/kg in spice powders; however, it was ineffective for the spice-salt mixture. We show that pXRF analysis and a colorimetric assay provide information that may improve field decisions about Pb adulteration in a range of spice types, helping to minimize Pb exposure.
Assuntos
Chumbo , Especiarias , Chumbo/análise , Especiarias/análise , Espectrometria por Raios X/métodos , Cromatos , Monitoramento Ambiental/métodos , PósRESUMO
The development of fast, non-destructive, and green methods with adequate sensitivity for saffron authentication has important implications in the quality control of the entire production chain of this precious spice. In this context, the highly suitable sensitivity of a spectroscopic method coupled with chemometrics was verified. A total number of 334 samples were analyzed using attenuated-total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy; the collected spectra were processed by partial-least-squares discriminant analysis (PLS-DA) to evaluate the feasibility of this study for the discrimination between compliant saffron (fresh samples produced in 2020) and saffron samples adulterated with non-fresh stigmas produced in 2018 and 2016. PLS-DA was able to classify the saffron samples in accordance with the aging time and to discriminate fresh samples from the samples adulterated with non-fresh (legally expired) stigmas, achieving 100% of both sensitivity and specificity in external prediction. Moreover, PLS regression was able to predict the adulteration level with sufficient accuracy (the root-mean-square error of prediction was approximately 3-5%). In summary, ATR-FTIR and chemometrics can be employed to highlight the illegal blending of fresh saffron with unsold stocks of expired saffron, which may be a common fraudulent practice not yet considered in the scientific literature.
Assuntos
Crocus , Crocus/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Quimiometria , Especiarias/análise , Análise dos Mínimos QuadradosRESUMO
Saffron is a spice obtained from the drying process of the stigmas of the flower Crocus sativus Linnaeus. It is well known that the organoleptic characteristics of this spice are closely linked to the production area and harvesting year. The present work aims to evaluate whether saffron samples produced in different years and origins present sensibly different crocin profiles. To achieve this goal, 120 saffron samples were harvested between 2016 and 2020 in four different Italian areas. The crocins were analysed, identified, and quantified by high-performance liquid chromatography-electrospray-tandem mass spectrometry (HPLC-ESI-MS/MS) in multiple reaction monitoring mode (MRM). Subsequently, ANOVA-simultaneous component analysis (ASCA) was used to evaluate whether the origin and annuity significantly affected the composition of the crocins. ASCA confirmed the relevance of these effects. Eventually, soft independent modelling by class analogy (SIMCA) models were created for each of the four different origins. Mixtures of saffron from different areas were also prepared to test the robustness of the models. SIMCA provided satisfying results; in fact, models provided 100% sensitivity for three origins (Cascia, Sardinia, and Città della Pieve) on the external test set (48 samples) and 88% (sensitivity on the external test set) for the Spoleto class.
Assuntos
Crocus , Crocus/química , Espectrometria de Massas em Tandem , Carotenoides/química , Especiarias/análise , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
Volatile organic metabolites (VOMs) present in different spices can provide distinct analytical biosignatures related to organoleptic properties and health benefits. This study aimed to establish the volatilomic fingerprint of six of the most consumed spices all over the world (saffron (Crocus sativus L.), cinnamon (Cinnamomum verum), cumin (Cuminum cyminum L.), black pepper, (Piper nigrum L.), sweet paprika (Capsicum annuum L.), and curry (a mix of different herbs and spices)). Based on headspace solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis, this is a powerful strategy to explore and establish the spice's volatile pattern and unravel the potential health benefits related to the most important VOMs identified in each spice. This comprehensive knowledge will help in the definition of their authenticity, while simultaneously protecting against potential frauds and adulterations. A total of 162 VOMs were identified. Semi-quantitative assessments revealed that terpenoids and sesquiterpenoids amounted to the major volatile class in the investigated spices, except for cinnamon, where carbonyl compounds are the major group. Most of the studied spices comprised key characteristics of aroma and health bioactive compounds, e.g., dihydrojuneol in saffron, cinnamaldehyde in cinnamon, cuminaldehyde in cumin and curry, and caryophyllene in black pepper. The principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) successfully discriminated the investigated spices, being α-cubebene, 3-methyl butanal, ß-patchoulene and ß-selinene, the most important VOMs (highest VIP's) that contributed to its discrimination. Moreover, some VOMs have a high influence on the spice's bioactive potential, helping to prevent certain diseases including cancer, inflammatory-related diseases, diabetes, and cardiovascular diseases.
Assuntos
Capsicum , Crocus , Cuminum , Piper nigrum , Compostos Orgânicos Voláteis , Crocus/química , Cuminum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Piper nigrum/química , Especiarias/análise , Terpenos/análise , Compostos Orgânicos Voláteis/análiseRESUMO
In this study, self-made cat food attractant was prepared by Maillard reaction using hydrolysate of grass carp waste as raw material and glucose and cysteine hydrochloride as substrate. Its volatile compounds, antioxidant capacity, and pet palatability were investigated. The volatile compounds of attractants were analyzed using gas chromatography-mass spectrometry (GC-MS) which showed that alcohols and aldehydes were the most volatile in self-made attractants, accounting for 34.29% and 33.52%, respectively. Furthermore, Maillard reaction could significantly increase the antioxidant activity of self-made attractant, including scavenging activity on OH and DPPH free radicals as well as the chelating ability of Fe2+. The acceptance and palatability of two kinds of cat food were studied by adding 3% self-made or commercial attractants. The results of this study also found that both attractants could remarkably improve the intake rate of cat food. However, the self-made group was significantly less than the commercial group in first smell, first bite, and feeding rate, which might be because of the absence of umami ingredients and spices in self-made attractants.
Assuntos
Reação de Maillard , Compostos Orgânicos Voláteis , Gatos , Animais , Antioxidantes/química , Ração Animal/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Especiarias/análise , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/análiseRESUMO
BACKGROUND: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375-1829 m). METHODS: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. RESULTS: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. CONCLUSIONS: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products.
Assuntos
Anti-Infecciosos , Viola , Adaptação Psicológica , Anti-Infecciosos/farmacologia , Antioxidantes/química , Flavonoides/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Rutina , Especiarias/análise , Viola/químicaRESUMO
Fruits and vegetables are important components of a healthy diet. They are rich sources of vitamins and minerals, dietary fibre and a host of beneficial non-nutrient substances including plant sterols, flavonoids and other antioxidants. It has been reported that reduced intake of fruits and vegetables may increase the risk of non-communicable diseases (NCDs). Chili pepper, is a common and important spice used to enhance taste and nutrition. Over the years, reports have shown its potential as antioxidant and an anti-obesity agent. Obesity is a serious health concern as it may initiate other common chronic diseases. Due to the side effects of synthetic antioxidants and anti-obesity drugs, scientists are now focusing on natural products which produce similar effects to synthetic chemicals. This up-to-date review addresses this research gap and presents, in an accessible format, the nutritional, antioxidant and anti-obesity properties of different chili peppers. This review article serves as a reference guide for use of chili peppers as anti-obesity agents.
Assuntos
Fármacos Antiobesidade , Antioxidantes , Capsicum , Alimento Funcional , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Capsicum/química , Alimento Funcional/análise , Humanos , Valor Nutritivo , Obesidade/terapia , Especiarias/análiseRESUMO
BACKGROUND: Salt (sodium chloride) is an essential component of daily food, crucial for many physiological processes. Due to health risks related to salt over consumption, considerable interest is devoted to strategies to reduce dietary salt intake. In this work we evaluated the sensory dimensions of sea salts flavored with Mediterranean aromatic plants with the aim to confirm the role of herbs/spices in the enhancement of salty perception and to validate the use of flavored salts as a strategy to reduce salt intake. To this goal we compared taste dimensions (pleasantness, intensity, and familiarity) of solutions obtained with salt and sea salts flavored with Mediterranean herbs, spices, and fruits. Sensorial differences were analyzed using a seven-point hedonic Likert-type scale on 58 non-trained judges. RESULTS: Main flavor compounds, identified by gas chromatography-flame ionization detection-mass spectrometry (GC-FID-MS) analysis, were α-pinene and 1,8-cineole in myrtle salt (FS 1), verbenone, α-pinene, 1,8-cineole, and rosifoliol in herbs/plants salt (FS 2), and limonene in orange fruits/saffron salt (FS 3). At the dose of 0.04 g mL-1 , saline solutions obtained with flavored salt (containing approximately 6-30% less sodium chloride) were perceived as more intense, less familiar, but equally pleasant than pure salt solution. In particular, sea salt flavored with orange fruits/saffron emerged as the most interesting in potentiating saltiness perception. CONCLUSION: Our study confirmed the important role of Mediterranean aromatic plants in the enhancement of saltiness perception and qualified the use of flavored sea salt during food preparation/cooking instead of normal salt as a potential strategy to reduce the daily salt intake. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Cloreto de Sódio na Dieta , Paladar , Eucaliptol , Sais , Cloreto de Sódio/análise , Cloreto de Sódio na Dieta/análise , Especiarias/análise , Percepção GustatóriaRESUMO
A simple microwave-assisted synthesis of nitrogen-doped carbon dots with high oxygen content (O-N-CDs) was carried out with citric acid as a carbon source and 2,4-diamino-6-methyl-1,3,5-triazine as a nitrogen source in triethylene glycol (TEG) media. It was determined by SEM analysis that O-N-CDs consisted of particles of different sizes and shapes. Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis confirmed that O-N-CDs have a graphitic structure. Moreover, they showed a high fluorescence property based on the excitation wavelength. Therefore, a new fluorometric method was developed for the determination of banned food dye Sudan II by using the O-N-CDs. The proposed method was used in the determination of Sudan II in spiked spice samples. The detection limit was 0.6 mg L-1 and the linear range was 0-8 mg L-1.