Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.811
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(5): e0043523, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38661375

RESUMO

Acinetobacter baumannii is highly resistant to antimicrobial agents, and XDR strains have become widespread. A. baumannii has developed resistance to colistin, which is considered the last resort against XDR Gram-negative bacteria, mainly caused by lipooligosaccharide (LOS) phosphoethanolamine (pEtN) and/or galactosamine (GalN) modifications induced by mutations that activate the two-component system (TCS) pmrAB. Although PmrAB of A. baumannii has been recognized as a drug resistance factor, its function as TCS, including its regulatory genes and response factors, has not been fully elucidated. In this study, to clarify the function of PmrAB as TCS, we elucidated the regulatory genes (regulon) of PmrAB via transcriptome analysis using pmrAB-activated mutant strains. We discovered that PmrAB responds to low pH, Fe2+, Zn2+, and Al3+. A. baumannii selectively recognizes Fe2+ rather than Fe3+, and a novel region ExxxE, in addition to the ExxE motif sequence, is involved in the environmental response. Furthermore, PmrAB participates in the phosphoethanolamine modification of LOS on the bacterial surface in response to metal ions such as Al3+, contributing to the attenuation of Al3+ toxicity and development of resistance to colistin and polymyxin B in A. baumannii. This study demonstrates that PmrAB in A. baumannii not only regulates genes that play an important role in drug resistance but is also involved in responses to environmental stimuli such as metal ions and pH, and this stimulation induces LOS modification. This study reveals the importance of PmrAB in the environmental adaptation and antibacterial resistance emergence mechanisms of A. baumannii. IMPORTANCE: Antimicrobial resistance (AMR) is a pressing global issue in human health. Acinetobacter baumannii is notably high on the World Health Organization's list of bacteria for which new antimicrobial agents are urgently needed. Colistin is one of the last-resort drugs used against extensively drug-resistant (XDR) Gram-negative bacteria. However, A. baumannii has become increasingly resistant to colistin, primarily by modifying its lipooligosaccharide (LOS) via activating mutations in the two-component system (TCS) PmrAB. This study comprehensively elucidates the detailed mechanism of drug resistance of PmrAB in A. baumannii as well as its biological functions. Understanding the molecular biology of these molecules, which serve as drug resistance factors and are involved in environmental recognition mechanisms in bacteria, is crucial for developing fundamental solutions to the AMR problem.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Etanolaminas , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Antibacterianos/farmacologia , Metais/metabolismo , Metais/farmacologia , Fatores de Transcrição
2.
Parasitol Res ; 123(8): 303, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160298

RESUMO

This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.


Assuntos
Encéfalo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Nebivolol , Carga Parasitária , Toxoplasmose Animal , Animais , Nebivolol/farmacologia , Nebivolol/uso terapêutico , Camundongos , Toxoplasmose Animal/tratamento farmacológico , Toxoplasmose Animal/parasitologia , Encéfalo/parasitologia , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Feminino , Neurônios/efeitos dos fármacos , Neurônios/parasitologia , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Antiprotozoários/administração & dosagem , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Resultado do Tratamento , Óxido Nítrico/metabolismo , Toxoplasma/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732008

RESUMO

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Assuntos
Amidas , Suplementos Nutricionais , Etanolaminas , Neuralgia , Ácidos Palmíticos , Plantas Medicinais , Etanolaminas/farmacologia , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/administração & dosagem , Animais , Neuralgia/tratamento farmacológico , Amidas/farmacologia , Amidas/química , Plantas Medicinais/química , Polifenóis/farmacologia , Polifenóis/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Masculino , Antioxidantes/farmacologia , Ginkgo biloba/química , Humanos
4.
J Lipid Res ; 64(3): 100337, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716821

RESUMO

Liver function indicators are often impaired in patients with type 2 diabetes mellitus (T2DM), who present higher concentrations of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase than individuals without diabetes. However, the mechanism of liver injury in patients with T2DM has not been clearly elucidated. In this study, we performed a lipidomics analysis on the liver of T2DM mice, and we found that phosphatidylethanolamine (PE) levels were low in T2DM, along with an increase in diglyceride, which may be due to a decrease in the levels of phosphoethanolamine cytidylyltransferase (Pcyt2), thus likely affecting the de novo synthesis of PE. The phosphatidylserine decarboxylase pathway did not change significantly in the T2DM model, although both pathways are critical sources of PE. Supplementation with CDP-ethanolamine (CDP-etn) to increase the production of PE from the CDP-etn pathway reversed high glucose and FFA (HG&FFA)-induced mitochondrial damage including increased apoptosis, decreased ATP synthesis, decreased mitochondrial membrane potential, and increased reactive oxygen species, whereas supplementation with lysophosphatidylethanolamine, which can increase PE production in the phosphatidylserine decarboxylase pathway, did not. Additionally, we found that overexpression of PCYT2 significantly ameliorated ATP synthesis and abnormal mitochondrial morphology induced by HG&FFA. Finally, the BAX/Bcl-2/caspase3 apoptosis pathway was activated in hepatocytes of the T2DM model, which could also be reversed by CDP-etn supplements and PCYT2 overexpression. In summary, in the liver of T2DM mice, Pcyt2 reduction may lead to a decrease in the levels of PE, whereas CDP-etn supplementation and PCYT2 overexpression ameliorate partial mitochondrial function and apoptosis in HG&FFA-stimulated L02 cells.


Assuntos
Diabetes Mellitus Tipo 2 , Fosfatidiletanolaminas , Camundongos , Animais , Fosfatidiletanolaminas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , RNA Nucleotidiltransferases/metabolismo , Etanolaminas/farmacologia , Etanolaminas/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Trifosfato de Adenosina/metabolismo
5.
Biol Reprod ; 109(2): 192-203, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294625

RESUMO

In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.


Assuntos
Trifosfato de Adenosina , Motilidade dos Espermatozoides , Humanos , Masculino , Trifosfato de Adenosina/metabolismo , Motilidade dos Espermatozoides/fisiologia , Niclosamida/farmacologia , Prótons , Sêmen/metabolismo , Mitocôndrias/metabolismo , Espermatozoides/metabolismo , Etanolamina/metabolismo , Etanolamina/farmacologia , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Anticoncepcionais/farmacologia
6.
Circ Res ; 128(2): 262-277, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33208036

RESUMO

RATIONALE: The ß2-adrenoceptor (ß2-AR), a prototypical GPCR (G protein-coupled receptor), couples to both Gs and Gi proteins. Stimulation of the ß2-AR is beneficial to humans and animals with heart failure presumably because it activates the downstream Gi-PI3K-Akt cell survival pathway. Cardiac ß2-AR signaling can be regulated by crosstalk or heterodimerization with other GPCRs, but the physiological and pathophysiological significance of this type of regulation has not been sufficiently demonstrated. OBJECTIVE: Here, we aim to investigate the potential cardioprotective effect of ß2-adrenergic stimulation with a subtype-selective agonist, (R,R')-4-methoxy-1-naphthylfenoterol (MNF), and to decipher the underlying mechanism with a particular emphasis on the role of heterodimerization of ß2-ARs with another GPCR, 5-hydroxytryptamine receptors 2B (5-HT2BRs). METHODS AND RESULTS: Using pharmacological, genetic and biophysical protein-protein interaction approaches, we studied the cardioprotective effect of the ß2-agonist, MNF, and explored the underlying mechanism in both in vivo in mice and cultured rodent cardiomyocytes insulted with doxorubicin, hydrogen peroxide (H2O2) or ischemia/reperfusion. In doxorubicin (Dox)-treated mice, MNF reduced mortality and body weight loss, while improving cardiac function and cardiomyocyte viability. MNF also alleviated myocardial ischemia/reperfusion injury. In cultured rodent cardiomyocytes, MNF inhibited DNA damage and cell death caused by Dox, H2O2 or hypoxia/reoxygenation. Mechanistically, we found that MNF or another ß2-agonist zinterol markedly promoted heterodimerization of ß2-ARs with 5-HT2BRs. Upregulation of the heterodimerized 5-HT2BRs and ß2-ARs enhanced ß2-AR-stimulated Gi-Akt signaling and cardioprotection while knockdown or pharmacological inhibition of the 5-HT2BR attenuated ß2-AR-stimulated Gi signaling and cardioprotection. CONCLUSIONS: These data demonstrate that the ß2-AR-stimulated cardioprotective Gi signaling depends on the heterodimerization of ß2-ARs and 5-HT2BRs.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Cardiomiopatias/prevenção & controle , Fenoterol/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Doxorrubicina , Etanolaminas/farmacologia , Fenoterol/farmacologia , Fibrose , Peróxido de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Multimerização Proteica , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/genética , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
7.
Bioorg Chem ; 141: 106887, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37801784

RESUMO

Docosahexaenoic acid (DHA) has a strong anti-inflammatory effect and is reported to bind to the ligand-binding domain (LBD) of the anti-inflammatory modulator Nur77. Recently, we have found that DHA ethanolamine (DHA-EA) exerts anti-inflammatory activity as a Nur77 modulator. Herein, using a fragment splicing-based drug design strategy, nineteen new DHA-EA derivatives were synthesized starting from DHA algae oil and then evaluated for their anti-inflammatory activity. The cell-based cytotoxicity assays showed that compounds J2, J9, and J18 had no noticeable effect on the cell morphology and viability of RAW 264.7, LO2, and MCR-5 cells. Meanwhile, J9 was identified as the most potent anti-inflammatory molecule in LPS-stimulated RAW 264.7 cells. Also, the molecular docking study and SPR assay demonstrated that J9 exhibited in vitro Nur77-binding affinity (KD = 8.58 × 10-6 M). Moreover, the mechanism studies revealed that the anti-inflammatory activity of J9 was associated with its inhibition of NF-κB activation in a Nur77-dependent manner. Notably, J9 could attenuate LPS-induced inflammation in the mouse acute lung injury (ALI) model. Overall, the DHA-EA derivative J9 targeting Nur77 is a potential candidate for developing anti-inflammatory and ALI-treating agents.


Assuntos
Ácidos Docosa-Hexaenoicos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Camundongos , Anti-Inflamatórios/efeitos adversos , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Etanolaminas/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores
8.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36982966

RESUMO

Uveal melanoma (UM) is the most common primary cancer of the eye in adults. A new systemic therapy is needed to reduce the high metastasis and mortality rate. As ß-blockers are known to have anti-tumor effects on various cancer entities, this study focuses on investigating the effect of ß1-selective blockers atenolol, celiprolol, bisoprolol, metoprolol, esmolol, betaxolol, and in particular, nebivolol on UM. The study was performed on 3D tumor spheroids as well as 2D cell cultures, testing tumor viability, morphological changes, long-term survival, and apoptosis. Flow cytometry revealed the presence of all three ß-adrenoceptors with a dominance of ß2-receptors on cell surfaces. Among the blockers tested, solely nebivolol concentration-dependently decreased viability and altered 3D tumor spheroid structure. Nebivolol blocked the repopulation of cells spreading from 3D tumor spheroids, indicating a tumor control potential at a concentration of ≥20 µM. Mechanistically, nebivolol induced ATP depletion and caspase-3/7 activity, indicating that mitochondria-dependent signaling is involved. D-nebivolol or nebivolol combined with the ß2-antagonist ICI 118.551 displayed the highest anti-tumor effects, suggesting a contribution of both ß1- and ß2-receptors. Thus, the present study reveals the tumor control potential of nebivolol in UM, which may offer a perspective for co-adjuvant therapy to reduce recurrence or metastasis.


Assuntos
Etanolaminas , Melanoma , Adulto , Humanos , Nebivolol/farmacologia , Etanolaminas/farmacologia , Benzopiranos/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Melanoma/tratamento farmacológico , Receptores Adrenérgicos beta
9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047247

RESUMO

N-docosahexaenoylethanolamine (DHEA), or synaptamide, is an endogenous metabolite of docosahexaenoic acid (DHA) that exhibits synaptogenic and neurogenic effects. In our previous studies, synaptamide administration inhibited the neuropathic pain-like behavior and reduced inflammation in the central nervous system following sciatic nerve injury. In the present study, we examine the effect of synaptamide on the peripheral nervous system in a neuropathic pain condition. The dynamics of ionized calcium-binding adapter molecule 1 (iba-1), CD68, CD163, myelin basic protein, and the production of interleukin 1ß and 6 within the sciatic nerve, as well as the neuro-glial index and the activity of iba-1, CD163, glial fibrillary acidic protein (GFAP), neuronal NO synthase (nNOS), substance P (SP), activating transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), are studied. According to our results, synaptamide treatment (4 mg/kg/day) (1) decreases the weight-bearing deficit after nerve trauma; (2) enhances the remyelination process in the sciatic nerve; (3) shows anti-inflammatory properties in the peripheral nervous system; (4) decreases the neuro-glial index and GFAP immunoreactivity in the DRG; (5) inhibits nNOS- and SP-ergic activity in the DRG, which might contribute to neuropathic pain attenuation. In general, the current study demonstrates the complex effect of synaptamide on nerve injury, which indicates its high potential for neuropathic pain management.


Assuntos
Neuralgia , Neuropatia Ciática , Humanos , Etanolaminas/farmacologia , Neuropatia Ciática/metabolismo , Nervo Isquiático/metabolismo , Anti-Inflamatórios/metabolismo , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Hiperalgesia/metabolismo
10.
Eur J Neurosci ; 56(5): 4514-4528, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35902984

RESUMO

Brain ageing has been related to a decrease in cellular metabolism, to an accumulation of misfolded proteins and to an alteration of the lipid membrane composition. These alterations act as contributive aspects of age-related memory decline by reducing membrane excitability and neurotransmitter release. In this sense, precursors of phospholipids (PLs) can restore the physiological composition of cellular membranes and ameliorate the cellular defects associated with brain ageing. In particular, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) have been shown to restore mitochondrial function, reduce the accumulation of amyloid beta (Aß) and, at the same time, provide the amount of acetylcholine needed to reduce memory deficit. Among PL precursors, alpha-glycerylphosphorylethanolamine (GPE) has shown to protect astrocytes from Aß injuries and to slow-down ageing of human neural stem cells. GPE has been evaluated in aged human hippocampal neurons, which are implicated in learning and memory, and constitute a good in vitro model to investigate the beneficial properties of GPE. In order to mimic cellular ageing, the cells have been maintained 21 days in vitro and challenged with GPE. Results of the present paper showed GPE ability to increase PE and PC content, glucose uptake and the activity of the chain respiratory complex I and of the GSK-3ß pathway. Moreover, the nootropic compound showed an increase in the transcriptional/protein levels of neurotrophic and well-being related genes. Finally, GPE counteracted the accumulation of ageing-related misfolded proteins (a-synuclein and tau). Overall, our data underline promising effects of GPE in counteracting cellular alterations related to brain ageing and cognitive decline.


Assuntos
Peptídeos beta-Amiloides , Fosfatidiletanolaminas , Idoso , Peptídeos beta-Amiloides/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia
11.
Nitric Oxide ; 119: 19-28, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902580

RESUMO

In this study, we investigated the possible role of the l-cysteine/hydrogen sulfide pathway in ß3-adrenoceptors-mediated relaxation in isolated mouse gastric fundus tissue. l-cysteine (endogenous H2S; 10-6-10-2 M), sodium hydrogen sulfide (NaHS; exogenous H2S; 10-6-10-3 M), selective ß3-adrenoceptors agonist BRL 37344 (10-9-10-4 M) and non-selective ß-adrenoceptor agonist isoprenaline (10-9-10-4 M) produced concentration-dependent relaxation in mouse gastric fundus. The non-selective ß-adrenoceptors antagonist propranolol (10-6 M) inhibited the relaxant response to isoprenaline but not to BRL 37344. On the other hand, the selective ß3-adrenoceptors antagonist SR 59230A (10-5 M) inhibited the relaxant responses to BRL 37344. In addition, cystathionine-gamma-lyase (CSE) inhibitor D,L-propargylglycine (PAG, 10-2 M), cystathionine-beta-synthase inhibitor (CBS) aminooxyacetic acid (AOAA, 10-2 M), and the combination of these inhibitors significantly reduced the relaxant responses induced by l-cysteine and BRL 37344. Pre-incubation of gastric fundal strips with propranolol (10-6 M) and SR 59230A (10-5 M) did not affect relaxations to l-cysteine and NaHS. Also, the existence of CSE, CBS, 3-mercaptopurivate sulfur transferase (3-MST) enzymes and ß3-adrenoceptors were detected in gastric fundal tissue. Furthermore, basal H2S release was detected in the measurements. H2S level increased in the presence of l-cysteine, NaHS, and BRL 37344. The increase in H2S level by l-cysteine and BRL 37344 decreased significantly with PAG and AOAA enzyme inhibitors. These results suggest that endogenous H2S is synthesized from l-cysteine at least by CBS and CSE enzymes. Also, ß3-adrenoceptors are found in the mouse stomach fundus and mediate BRL 37344-induced relaxations, and l-cysteine/hydrogen sulfide pathway plays a partial role in ß3-adrenoceptors-mediated relaxation in mouse gastric fundus tissue.


Assuntos
Cisteína/metabolismo , Fundo Gástrico/metabolismo , Sulfeto de Hidrogênio/metabolismo , Relaxamento Muscular/fisiologia , Receptores Adrenérgicos beta 3/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Etanolaminas/farmacologia , Fundo Gástrico/enzimologia , Isoproterenol/farmacologia , Masculino , Camundongos , Propanolaminas/farmacologia , Propranolol/farmacologia , Sulfurtransferases/metabolismo
12.
Malar J ; 21(1): 331, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376921

RESUMO

BACKGROUND: Gametocytes are the sexual stages ensuring continuity of the development cycle of the parasite, as well as its transmission to humans. The efficacy of artemisinin-based anti-malarials against asexual stages of Plasmodium has been reported in Madagascar, but their effects on gametocytes are not well documented. The present study aims to determine the emergence of gametocyte and gametocyte clearance after artesunate-amodiaquine (ASAQ) or artemether-lumefantrine (AL) treatment in children with uncomplicated Plasmodium falciparum malaria in 5 regions of Madagascar. METHODS: 558 children with uncomplicated P. falciparum malaria, aged between 1 and 15 years, were assigned randomly to AL or ASAQ treatment. They come from 5 regions of Madagascar with different epidemiological facies related to malaria: Ankilivalo, Benenitra, Ampanihy, Ankazomborona and Matanga. Gametocytes were identified by microscopy, from t blood smears at day 1, day 2, day 3, day 7, day 14, day 21 and day 28 after treatment. RESULTS: At baseline, 9.7% (54/558) children [95% CI: 7.4-12.5%] had detectable gametocyte by microscopy. Among the 54 enrolled children, gametocytes emergence rate was high during the first days of treatment in both treatment arms (AL and ASAQ), especially on day 1. Gametocytes were undetectable from day 14 for AL arm while for ASAQ arm, gametocyte carriage was gradually decreased but persisted until day 21. CONCLUSION: This study demonstrates that AL has a more rapid effect on gametocyte clearance compared to ASAQ in children with uncomplicated Plasmodium falciparum malaria.


Assuntos
Antimaláricos , Malária Falciparum , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Amodiaquina/uso terapêutico , Amodiaquina/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Artesunato/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Etanolaminas/farmacologia , Madagáscar , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
13.
Cardiovasc Drugs Ther ; 36(5): 959-971, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34106365

RESUMO

Bisoprolol and nebivolol are highly selective ß1-adrenoceptor antagonists, with clinical indications in many countries within the management of heart failure with reduced left ventricular ejection fraction (HFrEF), ischaemic heart disease (IHD), and hypertension. Nebivolol has additional vasodilator actions, related to enhanced release of NO in the vascular wall. In principle, this additional mechanism compared with bisoprolol might lead to more potent vasodilatation, which in turn might influence the effectiveness of nebivolol in the management of HFrEF, IHD and hypertension. In this article, we review the therapeutic properties of bisoprolol and nebivolol, as representatives of "second generation" and "third generation" ß-blockers, respectively. Although head-to-head trials are largely lacking, there is no clear indication from published studies of an additional effect of nebivolol on clinical outcomes in patients with HFrEF or the magnitude of reductions of BP in patients with hypertension.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Hipertensão , Isquemia Miocárdica , Antagonistas Adrenérgicos beta/uso terapêutico , Benzopiranos/efeitos adversos , Bisoprolol/farmacologia , Bisoprolol/uso terapêutico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Nebivolol/efeitos adversos , Volume Sistólico , Vasodilatadores/uso terapêutico , Função Ventricular Esquerda
14.
Biochem Biophys Res Commun ; 577: 32-37, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500233

RESUMO

4,8-Sphingadienines (SD), metabolites of glucosylceramides (GlcCer), are sometimes determined as key mediators of the biological activity of dietary GlcCer, and cis/trans geometries of 4,8-SD have been reported to affect its activity. Since regulating excessive activation of mast cells seems an important way to ameliorate allergic diseases, this study was focused on cis/trans stereoisomeric-dependent inhibitory effects of 4,8-SD on mast cell activation. Degranulation of RBL-2H3 was inhibited by treatment of 4-cis-8-trans- and 4-cis-8-cis-SD, and their intradermal administrations ameliorated ear edema in passive cutaneous anaphylaxis reaction, but 4-trans-8-trans- and 4-trans-8-cis-SD did not. Although the activation of mast cells depends on the bound IgE contents, those stereoisomers did not affect IgE contents on RBL-2H3 cells after the sensitization of anti-TNP IgE. These results indicated that 4-cis-8-trans- and 4-cis-8-cis-SD directly inhibit the activation of mast cells. In conclusion, it was assumed that 4,8-SD stereoisomers with cis double bond at C4-position shows anti-allergic activity by inhibiting downstream pathway after activation by the binding of IgE to mast cells.


Assuntos
Antialérgicos/farmacologia , Degranulação Celular/efeitos dos fármacos , Etanolaminas/farmacologia , Mastócitos/efeitos dos fármacos , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Animais , Antialérgicos/química , Células CACO-2 , Linhagem Celular Tumoral , Orelha/patologia , Edema/prevenção & controle , Etanolaminas/química , Etanolaminas/metabolismo , Feminino , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Glucosilceramidas/farmacologia , Humanos , Mastócitos/fisiologia , Camundongos Endogâmicos BALB C , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Estereoisomerismo
15.
Biochem Biophys Res Commun ; 566: 164-169, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34126347

RESUMO

Palmitoylethanolamide (PEA) offers a strong protection against BBB disruption and neurological deficits after cerebral ischaemic/reperfusion (I/R) injury. To date, these BBB protective effects of PEA are mainly attributed to PPARα-mediated actions. However, whether PEA protects against BBB disruption through direct regulation of cytoskeletal microfilaments remains unknown. Here, we identified PEA as a Rho-associated protein kinase (ROCK2) inhibitor (IC50 = 38.4 ± 4.8 µM). In vitro data suggested that PEA reduced the activation of ROCK/MLC signaling and stress fiber formation within microvascular endothelial cells (ECs) after oxygen-glucose deprivation (OGD), and consequently attenuated early (0-4 h) EC barrier disruption. These actions of PEA could not be blocked by the PPARα antagonist GW6471. In summary, the present study described a previously unexplored role of PEA as a ROCK2 inhibitor, and propose a PPARα-independent mechanism for pharmacological effects of PEA.


Assuntos
Amidas/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Etanolaminas/uso terapêutico , Cadeias Leves de Miosina/metabolismo , Ácidos Palmíticos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Linhagem Celular , Etanolaminas/farmacologia , Humanos , Camundongos , Ácidos Palmíticos/farmacologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
16.
J Neuroinflammation ; 18(1): 157, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273979

RESUMO

BACKGROUND: Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. METHODS: The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. RESULTS: CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. CONCLUSION: Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Assuntos
Concussão Encefálica/complicações , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Gliose/tratamento farmacológico , Gliose/metabolismo , Trato Óptico/efeitos dos fármacos , Trato Óptico/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Concussão Encefálica/patologia , Técnicas de Cultura de Células , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Potenciais Evocados Visuais , Gliose/complicações , Inflamação , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Trato Óptico/lesões , Fator de Necrose Tumoral alfa/metabolismo , Visão Ocular
17.
Drug Metab Dispos ; 49(3): 179-187, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376147

RESUMO

CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Ativação do Canal Iônico/fisiologia , Triptofano/metabolismo , Animais , Cristalografia por Raios X/métodos , Citocromo P-450 CYP2D6/química , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Estrutura Secundária de Proteína , Ratos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia , Triptofano/química
18.
Cytokine ; 137: 155341, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128919

RESUMO

The adipokine, leptin exerts inhibitory effect on both spontaneous and oxytocin-induced contractions in myometrium. However, the mechanisms involved in leptin-induced effect are not clear. In the present study, we studied the altered characteristics of uterine contractions in the presence of leptin and the possible mechanisms of its effect in late pregnant (18.5 day) mouse uterus. We conducted functional, biochemical and molecular biology studies to demonstrate the mechanism of leptin-induced response. Leptin exerted an inhibitory response (Emax 40.5 ± 3.99%) on basal uterine contractions. The extent of inhibition was less than that obtained with known uterine relaxants, salbutamol (Emax103 ± 8.66%) and BRL-37344 (Emax 84.79 ± 8.12%). Leptin-induced uterine response was inhibited by leptin receptor antagonist SHLA and JAK-STAT pathway inhibitor, AG-490. The relaxant response was also subdued by NO-cGMP-PK-G pathway blockers L-NAME, 1400W, ODQ and KT-5823. Further, leptin enhanced the levels of NO and cGMP in uterine tissues. Also, SHLA, AG-490 and a combination of 1400 W and L-NAME prevented leptin-induced increase in NO. Similar effect was observed on cGMP levels in presence of leptin and SHLA. However, leptin did not influence CaCl2-induced response in potassium-depolarized tissues. We also detected leptin receptor protein in late pregnant mouse uterus located in endometrial luminal epithelium and myometrial layers. Real-time PCR studies revealed significantly higher expression of short forms of the receptor (ObRa and ObRc) in comparison to the long form (ObRb). In conclusion, the results of the present study suggest that leptin inhibits mouse uterine contraction by stimulating short forms of the leptin receptors and activating NO pathway in a JAK-STAT-dependent manner.


Assuntos
GMP Cíclico/metabolismo , Leptina/farmacologia , Óxido Nítrico/metabolismo , Receptores para Leptina/metabolismo , Contração Uterina/efeitos dos fármacos , Útero/efeitos dos fármacos , Albuterol/farmacologia , Animais , Relação Dose-Resposta a Droga , Etanolaminas/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores para Leptina/agonistas , Receptores para Leptina/genética , Útero/metabolismo , Útero/fisiologia
19.
FASEB J ; 34(1): 350-364, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914699

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-α activation controls hepatic lipid homeostasis, stimulating fatty acid oxidation, and adapting the metabolic response to lipid overload and storage. Here, we investigate the effect of palmitoylethanolamide (PEA), an endogenous PPAR-α ligand, in counteracting hepatic metabolic inflexibility and mitochondrial dysfunction induced by high-fat diet (HFD) in mice. Long-term PEA administration (30 mg/kg/die per os) in HFD mice limited hepatic lipid accumulation, increased energy expenditure, and markedly reduced insulin resistance. In isolated liver mitochondria, we have demonstrated PEA capability to modulate mitochondrial oxidative capacity and energy efficiency, leading to the reduction of intracellular lipid accumulation and oxidative stress. Moreover, we have evaluated the effect of PEA on mitochondrial bioenergetics of palmitate-challenged HepG2 cells, using Seahorse analyzer. In vitro data showed that PEA recovered mitochondrial dysfunction and reduced lipid accumulation in insulin-resistant HepG2 cells, increasing fatty acid oxidation. Mechanistic studies showed that PEA effect on lipid metabolism was limited by AMP-activated protein kinase (AMPK) inhibition, providing evidence for a pivotal role of AMPK in PEA-induced adaptive metabolic setting. All these findings identify PEA as a modulator of hepatic lipid and glucose homeostasis, limiting metabolic inflexibility induced by nutrient overload.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Etanolaminas/farmacologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Amidas , Animais , Células Hep G2 , Humanos , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , PPAR alfa/metabolismo
20.
Biol Pharm Bull ; 44(1): 154-157, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132367

RESUMO

We developed a method to evaluate the activity of the Na+-Ca2+ exchanger (NCX) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) with fluorescence microscopy in mouse ventricular cardiomyocytes. In non-beating ventricular cardiomyocytes, α-adrenoceptor stimulation by phenylephrine caused a decrease in the cytoplasmic Ca2+ concentration, which was inhibited by SEA0400, an NCX inhibitor, but not cyclopiazonic acid, a SERCA inhibitor. ß-Adrenoceptor stimulation by isoprenaline caused a decrease in the cytoplasmic Ca2+ concentration, which was inhibited by cyclopiazonic acid but not SEA0400. Ellagic acid, a phenolic phytochemical, also decreased the basal Ca2+ concentration, which was inhibited by cyclopiazonic acid, but not SEA0400. Thus, this method using fluorescent microscopy and specific inhibitors would be useful for the evaluation of pharmacological agents acting on NCX and SERCA.


Assuntos
Bioensaio/métodos , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Etanolaminas/farmacologia , Ventrículos do Coração/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Adrenérgicos/farmacologia , Compostos de Anilina/farmacologia , Animais , Citosol/metabolismo , Ácido Elágico/farmacologia , Fluorescência , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Indóis/farmacologia , Isoproterenol/farmacologia , Camundongos , Microscopia de Fluorescência/métodos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Éteres Fenílicos/farmacologia , Fenilefrina/farmacologia , Reprodutibilidade dos Testes , Tecnologia Farmacêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA