Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345385

RESUMO

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Apoptose , Citocinas , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Monócitos/metabolismo , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária , Replicação Viral
2.
BMC Genomics ; 25(1): 715, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048939

RESUMO

BF/C2 is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of BF/C2 (A, B) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of BF/C2 (A, B) mRNA expression and GCRV viral replication. Correspondingly, BF/C2 (A, B) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of BF/C2A and BF/C2B during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the BF/C2A_3 and BF/C2A_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The BF/C2B_3 and BF/C2B_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between BF/C2A and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the BF/C2B groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (mapk1, il1b, rela, nfkbiab, akt3a, hyou1, hsp90b1, dnajc3a et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by BF/C2 (A, B) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that BF/C2 (A, B) of grass carp plays an important role in coping with GCRV infection.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/virologia , Carpas/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Reoviridae/fisiologia , Perfilação da Expressão Gênica , Transcriptoma , Replicação Viral , Regulação da Expressão Gênica
3.
Fish Shellfish Immunol ; 151: 109712, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901682

RESUMO

The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Serina Proteases Associadas a Proteína de Ligação a Manose , Filogenia , Infecções por Reoviridae , Reoviridae , Animais , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Carpas/imunologia , Carpas/genética , Reoviridae/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/genética , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária
4.
Fish Shellfish Immunol ; 151: 109730, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942250

RESUMO

RLR helicases RIG-I and MDA5, which are known as pattern recognition receptors to sense cytoplasmic viral RNAs and trigger antiviral immune responses, are DExD/H-box helicases. In teleost, whether and how non-RLR helicases regulate RLR helicases to affect viral infection remains unclear. Here, we report that the non-RLR helicase DHX40 from grass carp (namely gcDHX40) is a negative regulator of grass carp reovirus (GCRV) infection and RLR-mediated type I IFN production. GcDHX40 was a cytoplasmic protein. Ectopic expression of gcDHX40 facilitated GCRV replication and suppressed type I IFN production induced by GCRV infection and by those genes involved the RLR antiviral signaling pathway. Mechanistically, gcDHX40 promoted the generation of viral inclusion bodies (VIBs) by interacting with the NS38 protein of GCRV. Additionally, gcDHX40 interacted with RLR helicase, and impaired the formation of RLR-MAVS functional complexes. Taken together, our results indicate that gcDHX40 is a novel important proviral host factor involving in promoting the generation of GCRV VIBs and inhibiting the production of RLR-mediated type I IFNs.


Assuntos
Carpas , RNA Helicases DEAD-box , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Infecções por Reoviridae , Reoviridae , Proteínas não Estruturais Virais , Animais , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Carpas/imunologia , Carpas/genética , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Reoviridae/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/imunologia , RNA Helicases DEAD-box/metabolismo , Imunidade Inata/genética , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/imunologia , Regulação da Expressão Gênica/imunologia
5.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670410

RESUMO

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Assuntos
Autofagia , Carpas , Doenças dos Peixes , MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Infecções por Reoviridae , Reoviridae , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reoviridae/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia
6.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
7.
Fish Shellfish Immunol ; 150: 109647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797335

RESUMO

NIK (NF-κB inducing kinase) belongs to the mitogen-activated protein kinase family, which activates NF-κB and plays a vital role in immunology, inflammation, apoptosis, and a series of pathological responses. In NF-κB noncanonical pathway, NIK and IKKα have been often studied in mammals and zebrafish. However, few have explored the relationship between NIK and other subunits of the IKK complex. As a classic kinase in the NF-κB canonical pathway, IKKß has never been researched with NIK in fish. In this paper, the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) NIK (CiNIK) was first cloned and identified. The expression level of CiNIK in grass carp cells was increased under GCRV stimuli. Under the stimulation of GCRV, poly (I:C), and LPS, the expression of NIK in various tissues of grass carp was also increased. This suggests that CiNIK responds to viral stimuli. To study the relationship between CiNIK and CiIKKß, we co-transfected CiNIK-FLAG and CiIKKB-GFP into grass carp cells in coimmunoprecipitation and immunofluorescence experiments. The results revealed that CiNIK interacts with CiIKKß. Besides, the degree of autophosphorylation of CiNIK was enhanced under poly (I:C) stimulation. CiIKKß was phosphorylated by CiNIK and then activated the activity of p65. The activity change of p65 indicates that NF-κB downstream inflammatory genes will be functioning. CiNIK or CiIKKß up-regulated the expression of IL-8. It got higher when CiNIK and CiIKKß coexisted. This paper revealed that NF-κB canonical pathway and noncanonical pathway are not completely separated in generating benefits.


Assuntos
Sequência de Aminoácidos , Carpas , Proteínas de Peixes , Interleucina-8 , NF-kappa B , Proteínas Serina-Treonina Quinases , Regulação para Cima , Animais , Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Doenças dos Peixes/imunologia , Transdução de Sinais , Reoviridae/fisiologia , Filogenia , Quinase Induzida por NF-kappaB , Regulação da Expressão Gênica/imunologia , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Sequência de Bases , Perfilação da Expressão Gênica/veterinária
8.
Avian Pathol ; 53(5): 400-407, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38629680

RESUMO

Avian reovirus (ARV) has been continuously affecting the poultry industry in Pennsylvania (PA) in recent years. This report provides our diagnostic investigation on monitoring ARV field variants from broiler chickens in Pennsylvania. Genomic characterization findings of 72 ARV field isolates obtained from broiler cases during the last 6 years indicated that six distinct cluster variant strains (genotype I-VI), which were genetically diverse and distant from the vaccine and vaccine-related field strains, continuously circulated in PA poultry. Most of the variants clustered within genotype V (24/72, 33.3%), followed by genotype II (16/72, 22.2%), genotype IV (13/72, 18.1%), genotype III (13/72, 18.1%), genotype VI (05/72, 6.94%), and genotype I (1/72, 1.38%). The amino acid identity between 72 field variants and the vaccine strains (1133, 1733, 2408, 2177) varied from 45.3% to 99.7%, while the difference in amino acid counts ranged from 1-164. Among the field variants, the amino acid identity and count difference ranged from 43.3% to 100% and 0 to 170, respectively. Variants within genotype V had maximum amino acid identity (94.7-100%), whereas none of the variants within genotypes II and VI were alike. These findings indicate the continuing occurrence of multiple ARV genotypes in the environment.


Assuntos
Galinhas , Genótipo , Orthoreovirus Aviário , Filogenia , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Galinhas/virologia , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/isolamento & purificação , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Pennsylvania/epidemiologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/epidemiologia , Variação Genética
9.
J Fish Dis ; 47(1): e13874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37828712

RESUMO

Viral diseases are a serious problem in Atlantic salmon (Salmo salar L.) farming in Norway, often leading to reduced fish welfare and increased mortality. Disease outbreaks in salmon farms may lead to spread of viruses to the surrounding environment. There is a public concern that viral diseases may negatively affect the wild salmon populations. Pancreas disease (PD) caused by salmonid alphavirus (SAV) and heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus-1 (PRV-1) are common viral diseases in salmon farms in western Norway. In the current study, we investigated the occurrence of SAV and PRV-1 infections in 651 migrating salmon post-smolt collected from three fjord systems (Sognefjorden, Osterfjorden and Hardangerfjorden) located in western Norway in 2013 and 2014 by real-time RT-PCR. Of the collected post-smolts, 303 were of wild origin and 348 were hatchery-released. SAV was not detected in any of the tested post-smolt, but PRV-1 was detected in 4.6% of them. The Ct values of PRV-1 positive fish were usually high (mean 32.0; range: 20.1-36.8). PRV-1 prevalence in post-smolts from the three fjords was 6.1% in Sognefjorden followed by 4.8% in Osterfjorden and 2.3% in Hardangerfjorden. The prevalence PRV-1 was significantly higher in wild (6.9%) compared to hatchery-released post-smolt (2.6%). The occurrence of PRV-1 infection in the fish was lowest in the Hardangerfjorden which has the highest fish farming intensity. Our results suggest that SAV infection are uncommon in migrating smolt while PRV-1 infection can be detected at low level. These findings suggest that migrating smolts were at low risk from SAV or PRV-1 released from salmon farms located in their migration routes in 2013 and 2014.


Assuntos
Alphavirus , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Salmo salar , Animais , Doenças dos Peixes/epidemiologia , Orthoreovirus/genética , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Noruega/epidemiologia
10.
J Fish Dis ; 47(6): e13939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481093

RESUMO

The relationship of histopathological changes and the infection of Piscine orthoreovirus 2 (PRV-2) was investigated in coho salmon that were suffering from the erythrocytic inclusion body syndrome (EIBS). Immunohistochemical observations revealed abundant σ1 protein of PRV-2 in the spongy layer of the ventricle of the heart, where severe myocarditis was observed. In the spleen, the virus protein was detected in many erythrocytes, some of which were spherical-shaped and apparently dead. The number of erythrocytes was decreased in the spleen compared to the apparently healthy fish. The virus protein was also detected in some erythrocytes in blood vessels. The viral protein was often detected in many macrophages ingesting erythrocytes or dead cell debris in the spleen or in the kidney sinusoids. Large amounts of the viral genomic segment L2 were also detected in these organs by RT-qPCR. Many necrotic foci were found in the liver, although the virus protein was not detected in the hepatocytes. These results suggest that the primary targets of PRV-2 are myocardial cells and erythrocytes and that clinical symptoms such as anaemia or jaundice and histopathological changes such as myocarditis in EIBS-affected coho salmon are caused by PRV-2 infection.


Assuntos
Doenças dos Peixes , Oncorhynchus kisutch , Orthoreovirus , Infecções por Reoviridae , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/patologia , Orthoreovirus/fisiologia , Oncorhynchus kisutch/virologia , Eritrócitos/virologia , Eritrócitos/patologia , Baço/virologia , Baço/patologia
11.
J Fish Dis ; 47(9): e13978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38840479

RESUMO

Piscine orthoreovirus-1 (PRV-1) is a prevalent agent in Atlantic salmon (Salmo salar) and the causative agent of heart and skeletal muscle inflammation (HSMI), an important disease in farmed Atlantic salmon. Investigations into the introduction and dissemination routes of PRV-1 in a field setting have been limited. This study aimed to better understand PRV-1 infections and HSMI-associated mortality under field conditions. We tracked introduction and spread of PRV-1 over one production cycle in a geographically isolated region in Norwegian aquaculture. From five sites, a total of 32 virus isolates were sequenced and genogrouped. The results indicated multiple introductions of PRV-1 to the area, but also revealed a high level of genetic homogeneity among the virus variants. The variants differed from that of the previous production cycle at two out of three sites investigated, suggesting that synchronized fallowing can be a useful tool for preventing dissemination of PRV-1 between generations of fish. Exposure to PRV-1 at the freshwater stage was identified as a potential source of introduction. A low level of HSMI-associated mortality was observed at all sites, with the onset of mortality showing some variation across PRV-1 genogroups. However, the study highlighted the complexity of associating viral genogroups with mortality in a field setting. Overall, this study contributes valuable insights into PRV-1 dynamics in a real-world aquaculture setting, offering potential strategies for disease management and prevention.


Assuntos
Aquicultura , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Salmo salar , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , Salmo salar/virologia , Noruega , Orthoreovirus/genética , Orthoreovirus/isolamento & purificação , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Filogenia
12.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928143

RESUMO

Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.


Assuntos
Aeromonas hydrophila , Carpas , MicroRNAs , RNA Mensageiro , Reoviridae , Transcriptoma , Animais , Carpas/genética , Carpas/microbiologia , Carpas/virologia , Carpas/imunologia , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reoviridae/fisiologia , Proteômica/métodos , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/genética , Linhagem Celular , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/genética , Redes Reguladoras de Genes
13.
Methods Mol Biol ; 2838: 101-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126626

RESUMO

The titration of viruses onto susceptible cell lines is an important virological technique used to quantify infectious viral titers. It forms an integral component of epizootic hemorrhagic disease virus (EHDV) research, including estimating infectivity, calculating multiplicity of infection, and confirming virus propagation in cell culture. However, the ability to quantify infectious EHDV is also critical for disease control, particularly in the event of an outbreak. Routine EHD diagnostics do not accurately quantify infectious virus, which would allow accurate prediction of the onward transmission risk, but instead are typically more qualitative in nature (e.g., virus isolation) or only quantify viral genome copies (e.g., real-time PCR) which often remain detectable long after infectious virus is cleared from the host.Infectious EHDV titers are typically quantified through the detection of visible cytopathic effect (CPE) in the monolayer of susceptible mammalian cell cultures. However, not all susceptible cell lines demonstrate visible CPE upon EHDV infection, including cell lines such as KC cells, which are derived from the EHDV biological insect vector, Culicoides sonorensis. This chapter presents a comprehensive method for the titration of EHDV-positive samples onto relevant, susceptible mammalian (Vero) and insect (KC) cell lines and describes alternative methods that can be used to visualize EHDV infection, by CPE or immunofluorescent labeling of viral proteins, to enable the calculation of infectious EHDV titers.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Vírus da Doença Hemorrágica Epizoótica/genética , Animais , Linhagem Celular , Carga Viral , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Efeito Citopatogênico Viral , Cultura de Vírus/métodos
14.
Methods Mol Biol ; 2838: 221-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126636

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is transmitted by Culicoides biting midges. Studies aiming to predict the likely spread of EHDV require an understanding of the viral infection and replication kinetics within these insects, including the proportion of the insect population that are able to support virus transmission. Here, we describe methods for the infection of Culicoides with EHDV in the laboratory via oral infection using an artificial membrane system or a cotton pledget and intrathoracic (IT) inoculation. Each method can be used to explore determinants of vector competence of Culicoides species and populations for EHDV.


Assuntos
Ceratopogonidae , Vírus da Doença Hemorrágica Epizoótica , Insetos Vetores , Infecções por Reoviridae , Animais , Ceratopogonidae/virologia , Vírus da Doença Hemorrágica Epizoótica/fisiologia , Insetos Vetores/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária
15.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543728

RESUMO

Epizootic hemorrhagic disease (EHD) is a non-contagious arthropod-transmitted viral disease and a World Organization for Animal Health (WOAH)-listed disease of domestic and wild ruminants since 2008. EHDV is transmitted among susceptible animals by a few species of midges of genus Culicoides. During the fall of 2021, a large outbreak caused by the epizootic hemorrhagic disease virus (EHDV), identified as serotype 8, was reported in Tunisian dairy and beef farms with Bluetongue virus (BTV)-like clinical signs. The disease was detected later in the south of Italy, in Spain, in Portugal and, more recently, in France, where it caused severe infections in cattle. This was the first evidence of EHDV-8 circulation outside Australia since 1982. In this study, we analyzed the epidemiological situation of the 2021-2022 EHDV outbreaks reported in Tunisia, providing a detailed description of the spatiotemporal evolution of the disease. We attempted to identify the eco-climatic factors associated with infected areas using generalized linear models (GLMs). Our results demonstrated that environmental factors mostly associated with the presence of C. imicola, such as digital elevation model (DEM), slope, normalized difference vegetation index (NDVI), and night-time land surface temperature (NLST)) were by far the most explanatory variables for EHD repartition cases in Tunisia that may have consequences in neighboring countries, both in Africa and Europe through the spread of infected vectors. The risk maps elaborated could be useful for disease control and prevention strategies.


Assuntos
Doenças dos Animais , Vírus Bluetongue , Ceratopogonidae , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Bovinos , Animais , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Sorogrupo , Tunísia/epidemiologia , Ruminantes
16.
Vet Microbiol ; 292: 110069, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569324

RESUMO

Epizootic hemorrhagic disease (EHD) virus serotype 8 (EHDV-8) emerged in Spain in autumn 2022. In this study, we aimed to (1) characterize the clinical and lesional presentation of EHDV infection in European red deer (Cervus elaphus), and (2) study the spatial spread of the virus in wild ruminants in Spain after its introduction, in 2022/2023. We confirmed EHDV infection in two clinically compatible sick red deer by PCR and detection of anti-EHDV specific antibodies. EHDV infection occurred in red deer with hyperacute to acute clinical signs and lesions associated to vascular changes leading to death of the animals. Partial sequences of variable segment 2 (VP2) and segment 5 (NS1) genes of the detected viruses had >99% nucleotide identity with EHDV-8 sequences from Tunisia and Italy. In a cross-sectional serological study of EHDV in 592 wild ruminants, mainly red deer (n=578), in southwestern Spain, we detected anti-EHDV antibodies in 37 of 592 samples (6.3%; 95% confidence interval: 4.3-8.2), all from red deer and from the localities where clinical cases of EHD were confirmed in red deer. We conclude that EHDV-8 infection causes severe EHD in European red deer. The serosurvey revealed a limited spread of EHDV-8 in Spanish wild ruminant populations in the first year of virus detection in Spain.


Assuntos
Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Estudos Transversais , Espanha/epidemiologia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Ruminantes , Vírus da Doença Hemorrágica Epizoótica/genética
17.
J Wildl Dis ; 60(3): 670-682, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722548

RESUMO

Hemorrhagic disease (HD) of deer is caused by epizootic hemorrhagic disease virus (EHDV) or bluetongue virus (BTV) and is considered one of the most important viral diseases of white-tailed deer (Odocoileus virginianus). Despite evidence of changing patterns of HD in the northeastern and upper midwestern US, the historical and current patterns of HD in the Great Plains remain poorly described. We used results from an annual survey documenting HD mortality to characterize historic and current patterns of HD in the northern and central Great Plains (North Dakota, South Dakota, Nebraska, Kansas, and Oklahoma), US, between 1982 and 2020. Further, we assessed temporal change using linear regression to determine change in annual reporting intensity (percentage of counties in a state with reported HD) and change in reporting frequency (the number of years a county or state reported HD) during each decade between 1982 and 2020. Across the 38-yr study period, HD reports expanded northeast across latitude and longitude. Intensity of HD reports significantly increased during this period for three (North Dakota, South Dakota, Kansas) of five states examined. Frequency of reports also increased for all five states. Such changes in northern latitudes might lead to increased deer mortality in regions where HD epizootics have been historically less frequent. Understanding how patterns of HD are changing on the landscape is important when considering future deer management in the face of other mortality factors.


Assuntos
Cervos , Vírus da Doença Hemorrágica Epizoótica , Infecções por Reoviridae , Animais , Cervos/virologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/mortalidade , North Dakota/epidemiologia , South Dakota/epidemiologia
18.
Poult Sci ; 103(2): 103370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150831

RESUMO

The past few years have witnessed a rapid increase in cases of viral arthritis caused by avian reovirus (ARV) in chicken farms in China, attributed to the emergence of variant strains that render traditional vaccines ineffective, leading to substantial economic losses. In this study, we successfully isolated a novel ARV strain, designated as 2023ARV-GS-SDAU-1, from chickens in a broiler flock vaccinated with an ARV vaccine in Gansu province. We performed whole-genome sequencing and assessed its pathogenicity through 2 infection routes: oral administration and intraperitoneal injection. Our analysis revealed significant variations in the σA gene, associated with the inhibition of interferon secretion, compared to known ARV strains. The highest nucleotide identity observed was below 80%. Additionally, the σC gene exhibited notable variations compared to its homologous strains within the same group. Multiple alignment of the amino acid sequences classified the 2023ARV-GS-SDAU-1 strain under genotype I. Furthermore, our pathogenicity experiments indicated that the isolated strain exhibited more severe pathogenicity when administered via intraperitoneal injection in SPF chickens. In summary, our data suggest that the 2023ARV-GS-SDAU-1 strain represents a novel variant circulating in broiler flocks in China. These findings enrich currently available genetic information on ARV strains and provide a new complete genome sequence.


Assuntos
Orthoreovirus Aviário , Doenças das Aves Domésticas , Infecções por Reoviridae , Animais , Orthoreovirus Aviário/genética , Virulência , Galinhas , Doenças das Aves Domésticas/epidemiologia , Infecções por Reoviridae/epidemiologia , Infecções por Reoviridae/veterinária , Filogenia
19.
Methods Mol Biol ; 2838: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126627

RESUMO

The virus neutralization test (VNT) is a functional immunoassay which detects the presence and quantity of neutralizing antibodies. It is a highly sensitive and specific test. As with most neutralization assays, the EHDV VNT does not react with all virus-targeting antibodies, but specifically with those antibodies that bind to VP2, the outermost capsid structural protein of the virus. The interaction between VP2 and neutralizing antibodies can block EHDV cell binding, neutralizing its infectivity. The detection and quantification of neutralizing antibodies are indicative of how protected an animal is against reinfection. The EHD VNT can therefore be a useful tool to monitor the efficacy of a vaccination campaign. VP2 is also the main determinant of EHDV serotype specificity, and so EHDV-neutralizing antibodies which target VP2 are also serotype-specific. Throughdetecting and quantifying neutralizing antibodies, the VNT can discriminate the EHDV serotype responsible for an infection and provides insights into the time of infection. It is considered the gold standard test for identifying and quantifying antibodies against EHDV serotypes present in test serum samples. The assay is performed in vitro and is based on inhibition of virus infectivity in the presence of neutralizing antibodies. A neutralizing antibody titer is determined through the presence or absence of cytopathic effect in a cell monolayer. The VNT is a relatively inexpensive assay using standard laboratory equipment; however, to perform the assay, cell cultures, significant time, intensive labor, and technical skill are required.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Doença Hemorrágica Epizoótica , Testes de Neutralização , Testes de Neutralização/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vírus da Doença Hemorrágica Epizoótica/imunologia , Sorogrupo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/diagnóstico , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia
20.
Methods Mol Biol ; 2838: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126621

RESUMO

Risk assessment is the cornerstone of working safely with biological agents. The World Health Organization (WHO) Laboratory Biosafety Manual Fourth Edition Monograph on Risk Assessment provides stepwise guidance for completing a risk assessment, from information gathering and identifying hazards to evaluating the risks, developing, and implementing controls and review.To support the development of a mature safety culture within laboratories, it is important that all staff who handle biological agents understand the fundamentals of risk assessment and receive training in identifying hazards created by their work activities (or tasks) and understand how to mitigate the risks arising from carrying out that work. Any "competent" person may be involved in assessing the risks posed by carrying out an activity. Those closest to the work, who understand the details of the task being undertaken, should be involved in creating the risk assessment. The guidance in this chapter is not just applicable to biosafety professionals, laboratory scientists, or facility managers but can be used by any competent worker familiar with the activity being assessed.This chapter uses the guidance from the WHO to apply the principles of risk assessment to working with Epizootic hemorrhagic disease virus (EHDV), using an example activity-virus isolation from EHDV test samples in cell culture.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Animais , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Medição de Risco/métodos , Humanos , Gestão de Riscos , Contenção de Riscos Biológicos/métodos , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Organização Mundial da Saúde , Orbivirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA