Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.879
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(7): 1796-1810.e20, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30528432

RESUMO

The 9p21.3 cardiovascular disease locus is the most influential common genetic risk factor for coronary artery disease (CAD), accounting for ∼10%-15% of disease in non-African populations. The ∼60 kb risk haplotype is human-specific and lacks coding genes, hindering efforts to decipher its function. Here, we produce induced pluripotent stem cells (iPSCs) from risk and non-risk individuals, delete each haplotype using genome editing, and generate vascular smooth muscle cells (VSMCs). Risk VSMCs exhibit globally altered transcriptional networks that intersect with previously identified CAD risk genes and pathways, concomitant with aberrant adhesion, contraction, and proliferation. Unexpectedly, deleting the risk haplotype rescues VSMC stability, while expressing the 9p21.3-associated long non-coding RNA ANRIL induces risk phenotypes in non-risk VSMCs. This study shows that the risk haplotype selectively predisposes VSMCs to adopt a cell state associated with CAD phenotypes, defines new VSMC-based networks of CAD risk genes, and establishes haplotype-edited iPSCs as powerful tools for functionally annotating the human genome.


Assuntos
Cromossomos Humanos Par 9 , Doença da Artéria Coronariana , Edição de Genes , Haplótipos , Células-Tronco Pluripotentes Induzidas , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 9/genética , Cromossomos Humanos Par 9/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Feminino , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648484

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.


Assuntos
Aterosclerose , Células Endoteliais , Lamina Tipo A , Músculo Liso Vascular , Progéria , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Progéria/metabolismo , Progéria/genética , Progéria/patologia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
3.
Hum Mol Genet ; 33(12): 1090-1104, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38538566

RESUMO

RATIONALE: Pathogenic (P)/likely pathogenic (LP) SMAD3 variants cause Loeys-Dietz syndrome type 3 (LDS3), which is characterized by arterial aneurysms, dissections and tortuosity throughout the vascular system combined with osteoarthritis. OBJECTIVES: Investigate the impact of P/LP SMAD3 variants with functional tests on patient-derived fibroblasts and vascular smooth muscle cells (VSMCs), to optimize interpretation of SMAD3 variants. METHODS: A retrospective analysis on clinical data from individuals with a P/LP SMAD3 variant and functional analyses on SMAD3 patient-derived VSMCs and SMAD3 patient-derived fibroblasts, differentiated into myofibroblasts. RESULTS: Individuals with dominant negative (DN) SMAD3 variant in the MH2 domain exhibited more major events (66.7% vs. 44.0%, P = 0.054), occurring at a younger age compared to those with haploinsufficient (HI) variants. The age at first major event was 35.0 years [IQR 29.0-47.0] in individuals with DN variants in MH2, compared to 46.0 years [IQR 40.0-54.0] in those with HI variants (P = 0.065). Fibroblasts carrying DN SMAD3 variants displayed reduced differentiation potential, contrasting with increased differentiation potential in HI SMAD3 variant fibroblasts. HI SMAD3 variant VSMCs showed elevated SMA expression and altered expression of alternative MYH11 isoforms. DN SMAD3 variant myofibroblasts demonstrated reduced extracellular matrix formation compared to control cell lines. CONCLUSION: Distinguishing between P/LP HI and DN SMAD3 variants can be achieved by assessing differentiation potential, and SMA and MYH11 expression. The differences between DN and HI SMAD3 variant fibroblasts and VSMCs potentially contribute to the differences in disease manifestation. Notably, myofibroblast differentiation seems a suitable alternative in vitro test system compared to VSMCs.


Assuntos
Fibroblastos , Estudos de Associação Genética , Síndrome de Loeys-Dietz , Músculo Liso Vascular , Proteína Smad3 , Humanos , Proteína Smad3/genética , Proteína Smad3/metabolismo , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino , Feminino , Fibroblastos/metabolismo , Adulto , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Diferenciação Celular/genética , Linhagem Celular , Miócitos de Músculo Liso/metabolismo , Estudos Retrospectivos , Fenótipo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Mutação
4.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639096

RESUMO

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Assuntos
Aterosclerose , Redes Reguladoras de Genes , Análise de Célula Única , Humanos , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Masculino , Placa Aterosclerótica , Progressão da Doença , Feminino , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
5.
Circ Res ; 134(11): 1495-1511, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38686580

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS: Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS: In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor ß) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS: Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.


Assuntos
Fator 3 Ativador da Transcrição , Aneurisma da Aorta Abdominal , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Apoptose , Células Cultivadas , Angiotensina II , Proliferação de Células , Aorta Abdominal/patologia , Aorta Abdominal/metabolismo , Modelos Animais de Doenças
6.
Circ Res ; 134(11): 1427-1447, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629274

RESUMO

BACKGROUND: Medial arterial calcification is a chronic systemic vascular disorder distinct from atherosclerosis and is commonly observed in patients with chronic kidney disease, diabetes, and aging individuals. We previously showed that NR4A3 (nuclear receptor subfamily 4 group A member 3), an orphan nuclear receptor, is a key regulator in apo (apolipoprotein) A-IV-induced atherosclerosis progression; however, its role in vascular calcification is poorly understood. METHODS: We generated NR4A3-/- mice and 2 different types of medial arterial calcification models to investigate the biological roles of NR4A3 in vascular calcification. RNA-seq was performed to determine the transcriptional profile of NR4A3-/- vascular smooth muscle cells under ß-glycerophosphate treatment. We integrated Cleavage Under Targets and Tagmentation analysis and RNA-seq data to further investigate the gene regulatory mechanisms of NR4A3 in arterial calcification and target genes regulated by histone lactylation. RESULTS: NR4A3 expression was upregulated in calcified aortic tissues from chronic kidney disease mice, 1,25(OH)2VitD3 overload-induced mice, and human calcified aorta. NR4A3 deficiency preserved the vascular smooth muscle cell contractile phenotype, inhibited osteoblast differentiation-related gene expression, and reduced calcium deposition in the vasculature. Further, NR4A3 deficiency lowered the glycolytic rate and lactate production during the calcification process and decreased histone lactylation. Mechanistic studies further showed that NR4A3 enhanced glycolysis activity by directly binding to the promoter regions of the 2 glycolysis genes ALDOA and PFKL and driving their transcriptional initiation. Furthermore, histone lactylation promoted medial calcification both in vivo and in vitro. NR4A3 deficiency inhibited the transcription activation and expression of Phospho1 (phosphatase orphan 1). Consistently, pharmacological inhibition of Phospho1 attenuated calcium deposition in NR4A3-overexpressed vascular smooth muscle cells, whereas overexpression of Phospho1 reversed the anticalcific effect of NR4A3 deficiency in vascular smooth muscle cells. CONCLUSIONS: Taken together, our findings reveal that NR4A3-mediated histone lactylation is a novel metabolome-epigenome signaling cascade mechanism that participates in the pathogenesis of medial arterial calcification.


Assuntos
Histonas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares , Calcificação Vascular , Animais , Calcificação Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Camundongos , Humanos , Histonas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 3 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Proteínas de Ligação a DNA , Proteínas do Tecido Nervoso , Receptores de Esteroides , Receptores dos Hormônios Tireóideos
7.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639105

RESUMO

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Assuntos
Hipertensão Pulmonar , Remodelação Vascular , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Camundongos Transgênicos , Masculino , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia
8.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770649

RESUMO

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Assuntos
Histona-Lisina N-Metiltransferase , Hipertensão Pulmonar , Hipóxia , Mitofagia , Músculo Liso Vascular , Miócitos de Músculo Liso , PPAR gama , Artéria Pulmonar , Ratos Sprague-Dawley , Animais , Humanos , Masculino , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Hipóxia/complicações , Hipóxia/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Remodelação Vascular
9.
Circ Res ; 135(4): 488-502, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38979610

RESUMO

BACKGROUND: The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS: AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS: Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 (anti-CXC motif chemokine ligand 9) antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-ß (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-ß blockade using neutralizing anti-TGF-ß antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION: Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal , Aortite , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteína Quinase 1 Deficiente de Lisina WNK , Animais , Aortite/genética , Aortite/metabolismo , Aortite/patologia , Camundongos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Humanos , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Células Cultivadas , Camundongos Knockout para ApoE , Modelos Animais de Doenças , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia
10.
J Biol Chem ; 300(5): 107260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582447

RESUMO

Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção da Aorta Torácica , Fatores de Transcrição Kruppel-Like , Miócitos de Músculo Liso , Fatores de Transcrição , Animais , Humanos , Masculino , Camundongos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
11.
Circulation ; 149(24): 1885-1898, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38686559

RESUMO

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Miócitos de Músculo Liso , Animais , Aterosclerose/patologia , Aterosclerose/metabolismo , Humanos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Camundongos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo
12.
Circulation ; 150(5): 393-410, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38682326

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is high blood pressure in the lungs that originates from structural changes in small resistance arteries. A defining feature of PAH is the inappropriate remodeling of pulmonary arteries (PA) leading to right ventricle failure and death. Although treatment of PAH has improved, the long-term prognosis for patients remains poor, and more effective targets are needed. METHODS: Gene expression was analyzed by microarray, RNA sequencing, quantitative polymerase chain reaction, Western blotting, and immunostaining of lung and isolated PA in multiple mouse and rat models of pulmonary hypertension (PH) and human PAH. PH was assessed by digital ultrasound, hemodynamic measurements, and morphometry. RESULTS: Microarray analysis of the transcriptome of hypertensive rat PA identified a novel candidate, PBK (PDZ-binding kinase), that was upregulated in multiple models and species including humans. PBK is a serine/threonine kinase with important roles in cell proliferation that is minimally expressed in normal tissues but significantly increased in highly proliferative tissues. PBK was robustly upregulated in the medial layer of PA, where it overlaps with markers of smooth muscle cells. Gain-of-function approaches show that active forms of PBK increase PA smooth muscle cell proliferation, whereas silencing PBK, dominant negative PBK, and pharmacological inhibitors of PBK all reduce proliferation. Pharmacological inhibitors of PBK were effective in PH reversal strategies in both mouse and rat models, providing translational significance. In a complementary genetic approach, PBK was knocked out in rats using CRISPR/Cas9 editing, and loss of PBK prevented the development of PH. We found that PBK bound to PRC1 (protein regulator of cytokinesis 1) in PA smooth muscle cells and that multiple genes involved in cytokinesis were upregulated in experimental models of PH and human PAH. Active PBK increased PRC1 phosphorylation and supported cytokinesis in PA smooth muscle cells, whereas silencing or dominant negative PBK reduced cytokinesis and the number of cells in the G2/M phase of the cell cycle. CONCLUSIONS: PBK is a newly described target for PAH that is upregulated in proliferating PA smooth muscle cells, where it contributes to proliferation through changes in cytokinesis and cell cycle dynamics to promote medial thickening, fibrosis, increased PA resistance, elevated right ventricular systolic pressure, right ventricular remodeling, and PH.


Assuntos
Hipertensão Arterial Pulmonar , Artéria Pulmonar , Remodelação Vascular , Animais , Humanos , Ratos , Camundongos , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Proliferação de Células , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno
13.
Circulation ; 150(2): 132-150, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557054

RESUMO

BACKGROUND: An imbalance of antiproliferative BMP (bone morphogenetic protein) signaling and proliferative TGF-ß (transforming growth factor-ß) signaling is implicated in the development of pulmonary arterial hypertension (PAH). The posttranslational modification (eg, phosphorylation and ubiquitination) of TGF-ß family receptors, including BMPR2 (bone morphogenetic protein type 2 receptor)/ALK2 (activin receptor-like kinase-2) and TGF-ßR2/R1, and receptor-regulated Smads significantly affects their activity and thus regulates the target cell fate. BRCC3 modifies the activity and stability of its substrate proteins through K63-dependent deubiquitination. By modulating the posttranslational modifications of the BMP/TGF-ß-PPARγ pathway, BRCC3 may play a role in pulmonary vascular remodeling, hence the pathogenesis of PAH. METHODS: Bioinformatic analyses were used to explore the mechanism by which BRCC3 deubiquitinates ALK2. Cultured pulmonary artery smooth muscle cells (PASMCs), mouse models, and specimens from patients with idiopathic PAH were used to investigate the rebalance between BMP and TGF-ß signaling in regulating ALK2 phosphorylation and ubiquitination in the context of pulmonary hypertension. RESULTS: BRCC3 was significantly downregulated in PASMCs from patients with PAH and animals with experimental pulmonary hypertension. BRCC3, by de-ubiquitinating ALK2 at Lys-472 and Lys-475, activated receptor-regulated Smad1/5/9, which resulted in transcriptional activation of BMP-regulated PPARγ, p53, and Id1. Overexpression of BRCC3 also attenuated TGF-ß signaling by downregulating TGF-ß expression and inhibiting phosphorylation of Smad3. Experiments in vitro indicated that overexpression of BRCC3 or the de-ubiquitin-mimetic ALK2-K472/475R attenuated PASMC proliferation and migration and enhanced PASMC apoptosis. In SM22α-BRCC3-Tg mice, pulmonary hypertension was ameliorated because of activation of the ALK2-Smad1/5-PPARγ axis in PASMCs. In contrast, Brcc3-/- mice showed increased susceptibility of experimental pulmonary hypertension because of inhibition of the ALK2-Smad1/5 signaling. CONCLUSIONS: These results suggest a pivotal role of BRCC3 in sustaining pulmonary vascular homeostasis by maintaining the integrity of the BMP signaling (ie, the ALK2-Smad1/5-PPARγ axis) while suppressing TGF-ß signaling in PASMCs. Such rebalance of BMP/TGF-ß pathways is translationally important for PAH alleviation.


Assuntos
Hipertensão Pulmonar , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Humanos , Masculino , Camundongos , Receptores de Activinas Tipo II/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , PPAR gama/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Transdução de Sinais , Ubiquitinação , Remodelação Vascular
14.
Circulation ; 149(22): 1752-1769, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38348663

RESUMO

BACKGROUND: Vascular calcification, which is characterized by calcium deposition in arterial walls and the osteochondrogenic differentiation of vascular smooth muscle cells, is an actively regulated process that involves complex mechanisms. Vascular calcification is associated with increased cardiovascular adverse events. The role of 4-hydroxynonenal (4-HNE), which is the most abundant stable product of lipid peroxidation, in vascular calcification has been poorly investigated. METHODS: Serum was collected from patients with chronic kidney disease and controls, and the levels of 4-HNE and 8-iso-prostaglandin F2α were measured. Sections of coronary atherosclerotic plaques from donors were immunostained to analyze calcium deposition and 4-HNE. A total of 658 patients with coronary artery disease who received coronary computed tomography angiography were recruited to analyze the relationship between coronary calcification and the rs671 mutation in aldehyde dehydrogenase 2 (ALDH2). ALDH2 knockout (ALDH2-/-) mice, smooth muscle cell-specific ALDH2 knockout mice, ALDH2 transgenic mice, and their controls were used to establish vascular calcification models. Primary mouse aortic smooth muscle cells and human aortic smooth muscle cells were exposed to medium containing ß-glycerophosphate and CaCl2 to investigate cell calcification and the underlying molecular mechanisms. RESULTS: Elevated 4-HNE levels were observed in the serum of patients with chronic kidney disease and model mice and were detected in calcified artery sections by immunostaining. ALDH2 knockout or smooth muscle cell-specific ALDH2 knockout accelerated the development of vascular calcification in model mice, whereas overexpression or activation prevented mouse vascular calcification and the osteochondrogenic differentiation of vascular smooth muscle cells. In patients with coronary artery disease, patients with ALDH2 rs671 gene mutation developed more severe coronary calcification. 4-HNE promoted calcification of both mouse aortic smooth muscle cells and human aortic smooth muscle cells and their osteochondrogenic differentiation in vitro. 4-HNE increased the level of Runx2 (runt-related transcription factor-2), and the effect of 4-HNE on promoting vascular smooth muscle cell calcification was ablated when Runx2 was knocked down. Mutation of Runx2 at lysine 176 reduced its carbonylation and eliminated the 4-HNE-induced upregulation of Runx2. CONCLUSIONS: Our results suggest that 4-HNE increases Runx2 stabilization by directly carbonylating its K176 site and promotes vascular calcification. ALDH2 might be a potential target for the treatment of vascular calcification.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Aldeídos , Subunidade alfa 1 de Fator de Ligação ao Core , Camundongos Knockout , Miócitos de Músculo Liso , Calcificação Vascular , Animais , Aldeídos/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Células Cultivadas , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Idoso
15.
Circulation ; 150(1): 30-46, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557060

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease without effective pharmacological approaches. The nuclear hormone receptor LXRα (liver X receptor α), encoded by the NR1H3 gene, serves as a critical transcriptional mediator linked to several vascular pathologies, but its role in AAA remains elusive. METHODS: Through integrated analyses of human and murine AAA gene expression microarray data sets, we identified NR1H3 as a candidate gene regulating AAA formation. To investigate the role of LXRα in AAA formation, we used global Nr1h3-knockout and vascular smooth muscle cell-specific Nr1h3-knockout mice in 2 AAA mouse models induced with angiotensin II (1000 ng·kg·min; 28 days) or calcium chloride (CaCl2; 0.5 mol/L; 42 days). RESULTS: Upregulated LXRα was observed in the aortas of patients with AAA and in angiotensin II- or CaCl2-treated mice. Global or vascular smooth muscle cell-specific Nr1h3 knockout inhibited AAA formation in 2 mouse models. Loss of LXRα function prevented extracellular matrix degeneration, inflammation, and vascular smooth muscle cell phenotypic switching. Uhrf1, an epigenetic master regulator, was identified as a direct target gene of LXRα by integrated analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing. Susceptibility to AAA development was consistently enhanced by UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) in both angiotensin II- and CaCl2-induced mouse models. We then determined the CpG methylation status and promoter accessibility of UHRF1-mediated genes using CUT&Tag (cleavage under targets and tagmentation), RRBS (reduced representation bisulfite sequencing), and ATAC-seq (assay for transposase-accessible chromatin with sequencing) in vascular smooth muscle cells, which revealed that the recruitment of UHRF1 to the promoter of miR-26b led to DNA hypermethylation accompanied by relatively closed chromatin states, and caused downregulation of miR-26b expression in AAA. Regarding clinical significance, we found that underexpression of miR-26b-3p correlated with high risk in patients with AAA. Maintaining miR-26b-3p expression prevented AAA progression and alleviated the overall pathological process. CONCLUSIONS: Our study reveals a pivotal role of the LXRα/UHRF1/miR-26b-3p axis in AAA and provides potential biomarkers and therapeutic targets for AAA.


Assuntos
Aneurisma da Aorta Abdominal , Proteínas Estimuladoras de Ligação a CCAAT , Epigênese Genética , Receptores X do Fígado , Camundongos Knockout , MicroRNAs , Ubiquitina-Proteína Ligases , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Metilação de DNA , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Angiotensina II/farmacologia
16.
Gastroenterology ; 167(5): 993-1007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38906512

RESUMO

BACKGROUND & AIMS: Portal hypertension (PH) is one of the most frequent complications of chronic liver disease. The peripheral 5-hydroxytryptamine (5-HT) level was increased in cirrhotic patients. We aimed to elucidate the function and mechanism of 5-HT receptor 1A (HTR1A) in the portal vein (PV) on PH. METHODS: PH models were induced by thioacetamide injection, bile duct ligation, or partial PV ligation. HTR1A expression was detected using real-time polymerase chain reaction, in situ hybridization, and immunofluorescence staining. In situ intraportal infusion was used to assess the effects of 5-HT, the HTR1A agonist 8-OH-DPAT, and the HTR1A antagonist WAY-100635 on portal pressure (PP). Htr1a-knockout (Htr1a-/-) rats and vascular smooth muscle cell (VSMC)-specific Htr1a-knockout (Htr1aΔVSMC) mice were used to confirm the regulatory role of HTR1A on PP. RESULTS: HTR1A expression was significantly increased in the hypertensive PV of PH model rats and cirrhotic patients. Additionally, 8-OH-DPAT increased, but WAY-100635 decreased, the PP in rats without affecting liver fibrosis and systemic hemodynamics. Furthermore, 5-HT or 8-OH-DPAT directly induced the contraction of isolated PVs. Genetic deletion of Htr1a in rats and VSMC-specific Htr1a knockout in mice prevented the development of PH. Moreover, 5-HT triggered adenosine 3',5'-cyclic monophosphate pathway-mediated PV smooth muscle cell contraction via HTR1A in the PV. We also confirmed alverine as an HTR1A antagonist and demonstrated its capacity to decrease PP in rats with thioacetamide-, bile duct ligation-, and partial PV ligation-induced PH. CONCLUSIONS: Our findings reveal that 5-HT promotes PH by inducing the contraction of the PV and identify HTR1A as a promising therapeutic target for attenuating PH. As an HTR1A antagonist, alverine is expected to become a candidate for clinical PH treatment.


Assuntos
Hipertensão Portal , Camundongos Knockout , Pressão na Veia Porta , Veia Porta , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Hipertensão Portal/metabolismo , Hipertensão Portal/genética , Hipertensão Portal/fisiopatologia , Hipertensão Portal/etiologia , Ligadura , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/fisiopatologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Piperazinas/farmacologia , Pressão na Veia Porta/efeitos dos fármacos , Veia Porta/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Serotonina/metabolismo , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Transdução de Sinais , Tioacetamida/toxicidade
17.
FASEB J ; 38(20): e70114, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39432302

RESUMO

Competitive endogenous RNAs (ceRNA) theory has been proved in numerous biological processes. Nevertheless, there is a lack of research applying the ceRNA theory to the study of vascular calcification (VC) in chronic kidney diseases (CKD). In the present study, a ceRNA network was constructed after conducting transcriptome sequencing of differentially expressed genes, followed by experimental validation to identify a new target for the diagnosis and treatment of vascular calcification. Total RNA was extracted from ß-glycerophosphate (ß-GP) cultured vascular smooth muscle cells (VSMCs) on Day 7. Illumina HiSeq platform was utilized to build sequencing libraries. GO and KEGG analysis was conducted to identify the function of the differentially expressed genes. Protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. A ceRNA network was established based on TargetScan, miRDB, miRWALK, and miRanda database. Western blot and qRT-PCR were used to explore the expression level of protein and RNA, respectively. The direct binding sites were confirmed by dual-luciferase reporter assay. In total, 647 differentially expressed lncRNAs and 289 differentially expressed mRNAs were identified (|log2FC| ≥ 1, p < .05). The function of differentially expressed mRNAs was mainly enriched in negative regulation of osteoblast differentiation, regulation of RNA metabolic process, and other typical pathways. The ceRNA network was generated with a total of 107 interaction pairs. The lncRNA Prrc2c/miR-145-5p/Smad3 axis was considered a potential regulatory pathway within the ceRNA network. The regulatory relationship and targets of this ceRNA axis were validated via in vitro experiments. For the first time, we found that lncRNA Prrc2c was highly expressed and promoted calcification of VSMCs. Luciferase reporter assay showed that lncRNA Prrc2c could bind miR-145-5p at site 1755-1761. Similarly, luciferase reporter assay showed that miR-145-5p inhibited Smad3 expression by binding to its 3'UTR. Our findings provide a comprehensive examination of the ceRNA networks in vascular smooth muscle cells (VSMCs) treated with high phosphorate. Specifically, we have identified the role of lncRNA Prrc2c in promoting VSMC calcification through the miR-145-5p/Smad3 axis.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , Músculo Liso Vascular , RNA Longo não Codificante , Calcificação Vascular , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Smad3/metabolismo , Proteína Smad3/genética , Células Cultivadas , Regulação da Expressão Gênica , Transcriptoma , Glicerofosfatos/metabolismo , RNA Endógeno Competitivo
18.
FASEB J ; 38(13): e23707, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38995239

RESUMO

Abdominal aortic aneurysm (AAA) is a life-threatening disease characterized by extensive membrane destruction in the vascular wall that is closely associated with vascular smooth muscle cell (VSMC) phenotypic switching. A thorough understanding of the changes in regulatory factors during VSMC phenotypic switching is essential for managing AAA therapy. In this study, we revealed the impact of NRF2 on the modulation of VSMC phenotype and the development of AAA based on single-cell RNA sequencing analysis. By utilizing a murine model of VSMC-specific knockout of nuclear factor E2-related factor 2 (NRF2), we observed that the absence of NRF2 in VSMCs exacerbated AAA formation in an angiotensin II-induced AAA model. The downregulation of NRF2 promoted VSMC phenotypic switching, leading to an enhanced inflammatory response. Through genome-wide transcriptome analysis and loss- or gain-of-function experiments, we discovered that NRF2 upregulated the expression of VSMC contractile phenotype-specific genes by facilitating microRNA-145 (miR-145) expression. Our data identified NRF2 as a novel regulator involved in maintaining the VSMC contractile phenotype while also influencing AAA formation through an miR-145-dependent regulatory mechanism.


Assuntos
Aneurisma da Aorta Abdominal , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 2 Relacionado a NF-E2 , Fenótipo , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Knockout , Análise de Célula Única , Camundongos Endogâmicos C57BL , Angiotensina II/farmacologia , Análise de Sequência de RNA , Modelos Animais de Doenças
19.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091212

RESUMO

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Assuntos
Ferroptose , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas de Sinalização YAP , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas de Sinalização YAP/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Camundongos Knockout , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
20.
FASEB J ; 38(9): e23645, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703043

RESUMO

Inflammation assumes a pivotal role in the aortic remodeling of aortic dissection (AD). Asiatic acid (AA), a triterpene compound, is recognized for its strong anti-inflammatory properties. Yet, its effects on ß-aminopropionitrile (BAPN)-triggered AD have not been clearly established. The objective is to determine whether AA attenuates adverse aortic remodeling in BAPN-induced AD and clarify potential molecular mechanisms. In vitro studies, RAW264.7 cells pretreated with AA were challenged with lipopolysaccharide (LPS), and then the vascular smooth muscle cells (VSMCs)-macrophage coculture system was established to explore intercellular interactions. To induce AD, male C57BL/6J mice at three weeks of age were administered BAPN at a dosage of 1 g/kg/d for four weeks. To decipher the mechanism underlying the effects of AA, RNA sequencing analysis was conducted, with subsequent validation of these pathways through cellular experiments. AA exhibited significant suppression of M1 macrophage polarization. In the cell coculture system, AA facilitated the transformation of VSMCs into a contractile phenotype. In the mouse model of AD, AA strikingly prevented the BAPN-induced increases in inflammation cell infiltration and extracellular matrix degradation. Mechanistically, RNA sequencing analysis revealed a substantial upregulation of CX3CL1 expression in BAPN group but downregulation in AA-treated group. Additionally, it was observed that the upregulation of CX3CL1 negated the beneficial impact of AA on the polarization of macrophages and the phenotypic transformation of VSMCs. Crucially, our findings revealed that AA is capable of downregulating CX3CL1 expression, accomplishing this by obstructing the nuclear translocation of NF-κB p65. The findings indicate that AA holds promise as a prospective treatment for adverse aortic remodeling by suppressing the activity of NF-κB p65/CX3CL1 signaling pathway.


Assuntos
Dissecção Aórtica , Quimiocina CX3CL1 , Camundongos Endogâmicos C57BL , Triterpenos Pentacíclicos , Transdução de Sinais , Fator de Transcrição RelA , Remodelação Vascular , Animais , Camundongos , Masculino , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Remodelação Vascular/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Aminopropionitrilo/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA