Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(3): 676-691.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306983

RESUMO

Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.


Assuntos
Movimento , Neurônios , Encéfalo/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Memória
2.
Cell ; 187(7): 1745-1761.e19, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518772

RESUMO

Proprioception tells the brain the state of the body based on distributed sensory neurons. Yet, the principles that govern proprioceptive processing are poorly understood. Here, we employ a task-driven modeling approach to investigate the neural code of proprioceptive neurons in cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale movement repertoire to train neural networks based on 16 hypotheses, each representing different computational goals. We found that the emerging, task-optimized internal representations generalize from synthetic data to predict neural dynamics in CN and S1 of primates. Computational tasks that aim to predict the limb position and velocity were the best at predicting the neural activity in both areas. Since task optimization develops representations that better predict neural activity during active than passive movements, we postulate that neural activity in the CN and S1 is top-down modulated during goal-directed movements.


Assuntos
Neurônios , Propriocepção , Animais , Propriocepção/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Movimento/fisiologia , Primatas , Redes Neurais de Computação
3.
Annu Rev Neurosci ; 47(1): 145-166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38663092

RESUMO

The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.


Assuntos
Cerebelo , Aprendizagem , Movimento , Cerebelo/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Movimento/fisiologia
4.
Annu Rev Neurosci ; 47(1): 63-83, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38424473

RESUMO

Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Doença de Parkinson , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Movimento/fisiologia , Distonia/terapia , Distonia/fisiopatologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia
5.
Physiol Rev ; 104(3): 983-1020, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385888

RESUMO

Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.


Assuntos
Evolução Biológica , Dedos , Humanos , Fenômenos Biomecânicos , Dedos/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Neurobiologia , Desempenho Psicomotor/fisiologia
6.
Nature ; 630(8017): 686-694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839968

RESUMO

To convert intentions into actions, movement instructions must pass from the brain to downstream motor circuits through descending neurons (DNs). These include small sets of command-like neurons that are sufficient to drive behaviours1-the circuit mechanisms for which remain unclear. Here we show that command-like DNs in Drosophila directly recruit networks of additional DNs to orchestrate behaviours that require the active control of numerous body parts. Specifically, we found that command-like DNs previously thought to drive behaviours alone2-4 in fact co-activate larger populations of DNs. Connectome analyses and experimental manipulations revealed that this functional recruitment can be explained by direct excitatory connections between command-like DNs and networks of interconnected DNs in the brain. Descending population recruitment is necessary for behavioural control: DNs with many downstream descending partners require network co-activation to drive complete behaviours and drive only simple stereotyped movements in their absence. These DN networks reside within behaviour-specific clusters that inhibit one another. These results support a mechanism for command-like descending control in which behaviours are generated through the recruitment of increasingly large DN networks that compose behaviours by combining multiple motor subroutines.


Assuntos
Encéfalo , Conectoma , Drosophila melanogaster , Neurônios Motores , Rede Nervosa , Animais , Feminino , Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Rede Nervosa/fisiologia
7.
Nature ; 632(8025): 594-602, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862024

RESUMO

Animals have exquisite control of their bodies, allowing them to perform a diverse range of behaviours. How such control is implemented by the brain, however, remains unclear. Advancing our understanding requires models that can relate principles of control to the structure of neural activity in behaving animals. Here, to facilitate this, we built a 'virtual rodent', in which an artificial neural network actuates a biomechanically realistic model of the rat1 in a physics simulator2. We used deep reinforcement learning3-5 to train the virtual agent to imitate the behaviour of freely moving rats, thus allowing us to compare neural activity recorded in real rats to the network activity of a virtual rodent mimicking their behaviour. We found that neural activity in the sensorimotor striatum and motor cortex was better predicted by the virtual rodent's network activity than by any features of the real rat's movements, consistent with both regions implementing inverse dynamics6. Furthermore, the network's latent variability predicted the structure of neural variability across behaviours and afforded robustness in a way consistent with the minimal intervention principle of optimal feedback control7. These results demonstrate how physical simulation of biomechanically realistic virtual animals can help interpret the structure of neural activity across behaviour and relate it to theoretical principles of motor control.


Assuntos
Comportamento Animal , Modelos Neurológicos , Redes Neurais de Computação , Realidade Virtual , Animais , Ratos , Comportamento Animal/fisiologia , Aprendizado Profundo , Córtex Motor/fisiologia , Movimento/fisiologia , Córtex Sensório-Motor/fisiologia , Feminino , Ratos Long-Evans
8.
Nature ; 628(8008): 596-603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509371

RESUMO

Motor neurons are the final common pathway1 through which the brain controls movement of the body, forming the basic elements from which all movement is composed. Yet how a single motor neuron contributes to control during natural movement remains unclear. Here we anatomically and functionally characterize the individual roles of the motor neurons that control head movement in the fly, Drosophila melanogaster. Counterintuitively, we find that activity in a single motor neuron rotates the head in different directions, depending on the starting posture of the head, such that the head converges towards a pose determined by the identity of the stimulated motor neuron. A feedback model predicts that this convergent behaviour results from motor neuron drive interacting with proprioceptive feedback. We identify and genetically2 suppress a single class of proprioceptive neuron3 that changes the motor neuron-induced convergence as predicted by the feedback model. These data suggest a framework for how the brain controls movements: instead of directly generating movement in a given direction by activating a fixed set of motor neurons, the brain controls movements by adding bias to a continuing proprioceptive-motor loop.


Assuntos
Drosophila melanogaster , Neurônios Motores , Movimento , Postura , Propriocepção , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Retroalimentação Fisiológica/fisiologia , Cabeça/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Movimento/fisiologia , Postura/fisiologia , Propriocepção/genética , Propriocepção/fisiologia , Masculino
9.
Nature ; 631(8020): 378-385, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961292

RESUMO

The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.


Assuntos
Modelos Neurológicos , Movimento , Colículos Superiores , Percepção Visual , Animais , Feminino , Masculino , Objetivos , Cinética , Neurônios Motores/fisiologia , Movimento/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia
10.
Nature ; 628(8009): 795-803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632396

RESUMO

Insects constitute the most species-rich radiation of metazoa, a success that is due to the evolution of active flight. Unlike pterosaurs, birds and bats, the wings of insects did not evolve from legs1, but are novel structures that are attached to the body via a biomechanically complex hinge that transforms tiny, high-frequency oscillations of specialized power muscles into the sweeping back-and-forth motion of the wings2. The hinge consists of a system of tiny, hardened structures called sclerites that are interconnected to one another via flexible joints and regulated by the activity of specialized control muscles. Here we imaged the activity of these muscles in a fly using a genetically encoded calcium indicator, while simultaneously tracking the three-dimensional motion of the wings with high-speed cameras. Using machine learning, we created a convolutional neural network3 that accurately predicts wing motion from the activity of the steering muscles, and an encoder-decoder4 that predicts the role of the individual sclerites on wing motion. By replaying patterns of wing motion on a dynamically scaled robotic fly, we quantified the effects of steering muscle activity on aerodynamic forces. A physics-based simulation incorporating our hinge model generates flight manoeuvres that are remarkably similar to those of free-flying flies. This integrative, multi-disciplinary approach reveals the mechanical control logic of the insect wing hinge, arguably among the most sophisticated and evolutionarily important skeletal structures in the natural world.


Assuntos
Drosophila melanogaster , Voo Animal , Aprendizado de Máquina , Asas de Animais , Animais , Feminino , Fenômenos Biomecânicos/fisiologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/anatomia & histologia , Voo Animal/fisiologia , Músculos/fisiologia , Músculos/anatomia & histologia , Redes Neurais de Computação , Robótica , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Movimento/fisiologia , Cálcio/análise , Cálcio/metabolismo
11.
Nature ; 631(8020): 369-377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926579

RESUMO

Animal movement is controlled by motor neurons (MNs), which project out of the central nervous system to activate muscles1. MN activity is coordinated by complex premotor networks that facilitate the contribution of individual muscles to many different behaviours2-6. Here we use connectomics7 to analyse the wiring logic of premotor circuits controlling the Drosophila leg and wing. We find that both premotor networks cluster into modules that link MNs innervating muscles with related functions. Within most leg motor modules, the synaptic weights of each premotor neuron are proportional to the size of their target MNs, establishing a circuit basis for hierarchical MN recruitment. By contrast, wing premotor networks lack proportional synaptic connectivity, which may enable more flexible recruitment of wing steering muscles. Through comparison of the architecture of distinct motor control systems within the same animal, we identify common principles of premotor network organization and specializations that reflect the unique biomechanical constraints and evolutionary origins of leg and wing motor control.


Assuntos
Conectoma , Drosophila melanogaster , Extremidades , Neurônios Motores , Vias Neurais , Sinapses , Asas de Animais , Animais , Feminino , Masculino , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Extremidades/inervação , Extremidades/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Músculos/inervação , Músculos/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Asas de Animais/inervação , Asas de Animais/fisiologia
12.
Nat Rev Neurosci ; 25(4): 213-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443626

RESUMO

The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia
13.
Nat Methods ; 21(7): 1329-1339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997595

RESUMO

Keypoint tracking algorithms can flexibly quantify animal movement from videos obtained in a wide variety of settings. However, it remains unclear how to parse continuous keypoint data into discrete actions. This challenge is particularly acute because keypoint data are susceptible to high-frequency jitter that clustering algorithms can mistake for transitions between actions. Here we present keypoint-MoSeq, a machine learning-based platform for identifying behavioral modules ('syllables') from keypoint data without human supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it to identify syllables whose boundaries correspond to natural sub-second discontinuities in pose dynamics. Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at capturing correlations between neural activity and behavior and at classifying either solitary or social behaviors in accordance with human annotations. Keypoint-MoSeq also works in multiple species and generalizes beyond the syllable timescale, identifying fast sniff-aligned movements in mice and a spectrum of oscillatory behaviors in fruit flies. Keypoint-MoSeq, therefore, renders accessible the modular structure of behavior through standard video recordings.


Assuntos
Algoritmos , Comportamento Animal , Aprendizado de Máquina , Gravação em Vídeo , Animais , Camundongos , Comportamento Animal/fisiologia , Gravação em Vídeo/métodos , Movimento/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Masculino
14.
PLoS Biol ; 22(4): e3002623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38687807

RESUMO

How the activities of large neural populations are integrated in the brain to ensure accurate perception and behavior remains a central problem in systems neuroscience. Here, we investigated population coding of naturalistic self-motion by neurons within early vestibular pathways in rhesus macaques (Macacca mulatta). While vestibular neurons displayed similar dynamic tuning to self-motion, inspection of their spike trains revealed significant heterogeneity. Further analysis revealed that, during natural but not artificial stimulation, heterogeneity resulted primarily from variability across neurons as opposed to trial-to-trial variability. Interestingly, vestibular neurons displayed different correlation structures during naturalistic and artificial self-motion. Specifically, while correlations due to the stimulus (i.e., signal correlations) did not differ, correlations between the trial-to-trial variabilities of neural responses (i.e., noise correlations) were instead significantly positive during naturalistic but not artificial stimulation. Using computational modeling, we show that positive noise correlations during naturalistic stimulation benefits information transmission by heterogeneous vestibular neural populations. Taken together, our results provide evidence that neurons within early vestibular pathways are adapted to the statistics of natural self-motion stimuli at the population level. We suggest that similar adaptations will be found in other systems and species.


Assuntos
Macaca mulatta , Movimento , Neurônios , Núcleos Vestibulares , Animais , Feminino , Potenciais de Ação , Cabeça , Modelos Neurológicos , Percepção de Movimento , Movimento/fisiologia , Neurônios/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia , Masculino , Macaca mulatta/fisiologia
15.
PLoS Biol ; 22(6): e3002670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917200

RESUMO

Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.


Assuntos
Atenção , Ritmo beta , Macaca mulatta , Córtex Motor , Movimento , Tempo de Reação , Animais , Córtex Motor/fisiologia , Atenção/fisiologia , Ritmo beta/fisiologia , Movimento/fisiologia , Tempo de Reação/fisiologia , Macaca mulatta/fisiologia , Masculino , Sinais (Psicologia) , Desempenho Psicomotor/fisiologia
16.
Proc Natl Acad Sci U S A ; 121(32): e2318805121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39083417

RESUMO

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm Caenorhabditis elegans, we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining. We translate these dynamics into movement using resistive force theory, capturing the statistical properties of foraging trajectories. Predictive across scales, we leverage the longest-lived eigenvectors of the inferred Markov chain to perform a top-down subdivision of the worm's foraging behavior, revealing both "runs-and-pirouettes" as well as previously uncharacterized finer-scale behaviors. We use our model to investigate the relevance of these fine-scale behaviors for foraging success, recovering a trade-off between local and global search strategies.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Cadeias de Markov , Animais , Caenorhabditis elegans/fisiologia , Comportamento Animal/fisiologia , Modelos Biológicos , Movimento/fisiologia
17.
Proc Natl Acad Sci U S A ; 121(31): e2400687121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042677

RESUMO

The seemingly straightforward task of tying one's shoes requires a sophisticated interplay of joints, muscles, and neural pathways, posing a formidable challenge for researchers studying the intricacies of coordination. A widely accepted framework for measuring coordinated behavior is the Haken-Kelso-Bunz (HKB) model. However, a significant limitation of this model is its lack of accounting for the diverse variability structures inherent in the coordinated systems it frequently models. Variability is a pervasive phenomenon across various biological and physical systems, and it changes in healthy adults, older adults, and pathological populations. Here, we show, both empirically and with simulations, that manipulating the variability in coordinated movements significantly impacts the ability to change coordination patterns-a fundamental feature of the HKB model. Our results demonstrate that synchronized bimanual coordination, mirroring a state of healthy variability, instigates earlier transitions of coordinated movements compared to other variability conditions. This suggests a heightened adaptability when movements possess a healthy variability. We anticipate our study to show the necessity of adapting the HKB model to encompass variability, particularly in predictive applications such as neuroimaging, cognition, skill development, biomechanics, and beyond.


Assuntos
Movimento , Desempenho Psicomotor , Humanos , Masculino , Feminino , Desempenho Psicomotor/fisiologia , Adulto , Movimento/fisiologia , Fenômenos Biomecânicos , Adulto Jovem , Mãos/fisiologia
18.
Proc Natl Acad Sci U S A ; 121(6): e2306937121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285936

RESUMO

Visually guided reaching, a regular feature of human life, comprises an intricate neural control task. It includes identifying the target's position in 3D space, passing the representation to the motor system that controls the respective appendages, and adjusting ongoing movements using visual and proprioceptive feedback. Given the complexity of the neural control task, invertebrates, with their numerically constrained central nervous systems, are often considered incapable of this level of visuomotor guidance. Here, we provide mechanistic insights into visual appendage guidance in insects by studying the probing movements of the hummingbird hawkmoth's proboscis as they search for a flower's nectary. We show that visually guided proboscis movements fine-tune the coarse control provided by body movements in flight. By impairing the animals' view of their proboscis, we demonstrate that continuous visual feedback is required and actively sought out to guide this appendage. In doing so, we establish an insect model for the study of neural strategies underlying eye-appendage control in a simple nervous system.


Assuntos
Movimento , Desempenho Psicomotor , Animais , Humanos , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Insetos , Retroalimentação Sensorial/fisiologia , Percepção Visual/fisiologia
19.
Proc Natl Acad Sci U S A ; 121(6): e2316294121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285945

RESUMO

Recent studies have indicated somatosensory cortex involvement in motor learning and retention. However, the nature of its contribution is unknown. One possibility is that the somatosensory cortex is transiently engaged during movement. Alternatively, there may be durable learning-related changes which would indicate sensory participation in the encoding of learned movements. These possibilities are dissociated by disrupting the somatosensory cortex following learning, thus targeting learning-related changes which may have occurred. If changes to the somatosensory cortex contribute to retention, which, in effect, means aspects of newly learned movements are encoded there, disruption of this area once learning is complete should lead to an impairment. Participants were trained to make movements while receiving rotated visual feedback. The primary motor cortex (M1) and the primary somatosensory cortex (S1) were targeted for continuous theta-burst stimulation, while stimulation over the occipital cortex served as a control. Retention was assessed using active movement reproduction, or recognition testing, which involved passive movements produced by a robot. Disruption of the somatosensory cortex resulted in impaired motor memory in both tests. Suppression of the motor cortex had no impact on retention as indicated by comparable retention levels in control and motor cortex conditions. The effects were learning specific. When stimulation was applied to S1 following training with unrotated feedback, movement direction, the main dependent variable, was unaltered. Thus, the somatosensory cortex is part of a circuit that contributes to retention, consistent with the idea that aspects of newly learned movements, possibly learning-updated sensory states (new sensory targets) which serve to guide movement, may be encoded there.


Assuntos
Aprendizagem , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/fisiologia , Aprendizagem/fisiologia , Movimento/fisiologia , Retroalimentação Sensorial , Lobo Occipital , Transtornos da Memória
20.
Proc Natl Acad Sci U S A ; 121(34): e2321659121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116178

RESUMO

The primary motor cortex does not uniquely or directly produce alpha motoneurone (α-MN) drive to muscles during voluntary movement. Rather, α-MN drive emerges from the synthesis and competition among excitatory and inhibitory inputs from multiple descending tracts, spinal interneurons, sensory inputs, and proprioceptive afferents. One such fundamental input is velocity-dependent stretch reflexes in lengthening muscles, which should be inhibited to enable voluntary movement. It remains an open question, however, the extent to which unmodulated stretch reflexes disrupt voluntary movement, and whether and how they are inhibited in limbs with numerous multiarticular muscles. We used a computational model of a Rhesus Macaque arm to simulate movements with feedforward α-MN commands only, and with added velocity-dependent stretch reflex feedback. We found that velocity-dependent stretch reflex caused movement-specific, typically large and variable disruptions to arm movements. These disruptions were greatly reduced when modulating velocity-dependent stretch reflex feedback (i) as per the commonly proposed (but yet to be clarified) idealized alpha-gamma (α-γ) coactivation or (ii) an alternative α-MN collateral projection to homonymous γ-MNs. We conclude that such α-MN collaterals are a physiologically tenable propriospinal circuit in the mammalian fusimotor system. These collaterals could still collaborate with α-γ coactivation, and the few skeletofusimotor fibers (ß-MNs) in mammals, to create a flexible fusimotor ecosystem to enable voluntary movement. By locally and automatically regulating the highly nonlinear neuro-musculo-skeletal mechanics of the limb, these collaterals could be a critical low-level enabler of learning, adaptation, and performance via higher-level brainstem, cerebellar, and cortical mechanisms.


Assuntos
Macaca mulatta , Neurônios Motores , Reflexo de Estiramento , Reflexo de Estiramento/fisiologia , Animais , Neurônios Motores/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Córtex Motor/fisiologia , Simulação por Computador , Modelos Neurológicos , Braço/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA