Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 27(2): 221-227, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094116

RESUMO

Orthovanadate was shown to serve as a substrate for nucleoside phosphorylases from Escherichia coli, Shewanella oneidensis, Geobacillus stearothermophilus, and Halomonas chromatireducens AGD 8-3. An exception is thymidine phosphorylase from the extremophilic haloalkaliphilic bacterium Halomonas chromatireducens AGD 8-3, which cannot catalyze the vanadolysis of nucleosides. The kinetic parameters of nucleoside vanadolysis were evaluated.


Assuntos
Nucleosídeos , Vanadatos , Escherichia coli/metabolismo , Halomonas , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Especificidade por Substrato
2.
Biochemistry ; 60(20): 1573-1577, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33955225

RESUMO

Enzyme-catalyzed reactions sometimes display curvature in their Eyring plots in the absence of denaturation, indicative of a change in activation heat capacity. However, the effects of pH and (de)protonation on this phenomenon have remained unexplored. Herein, we report a kinetic characterization of the thermophilic pyrimidine nucleoside phosphorylase from Geobacillus thermoglucosidasius across a two-dimensional working space covering 35 °C and 3 pH units with two substrates displaying different pKa values. Our analysis revealed the presence of a measurable activation heat capacity change ΔCp⧧ in this reaction system, which showed no significant dependence on medium pH or substrate charge. Our results further describe the remarkable effects of a single halide substitution that has a minor influence on ΔCp⧧ but conveys a significant kinetic effect by decreasing the activation enthalpy, causing a >10-fold rate increase. Collectively, our results present an important piece in the understanding of enzymatic systems across multidimensional working spaces where the choice of reaction conditions can affect the rate, affinity, and thermodynamic phenomena independently of one another.


Assuntos
Bacillaceae/metabolismo , Fosforilases/metabolismo , Purina-Núcleosídeo Fosforilase/química , Catálise , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Pentosiltransferases/química , Fosforilases/fisiologia , Pirimidina Fosforilases/química , Especificidade por Substrato , Condutividade Térmica , Termodinâmica
3.
RNA Biol ; 18(sup1): 382-396, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34241577

RESUMO

The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded ßEßF-sheet of the QTRT2 subunit as an additional RNA-binding motif.


Assuntos
Guanina/metabolismo , Pentosiltransferases/química , Pentosiltransferases/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Pentosiltransferases/genética , Conformação Proteica , RNA de Transferência/genética
4.
Angew Chem Int Ed Engl ; 60(43): 23419-23426, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34387025

RESUMO

Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.


Assuntos
Proteínas de Bactérias/metabolismo , Pentosiltransferases/metabolismo , Quinazolinonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Mutação , Pentosiltransferases/química , Pentosiltransferases/genética , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Quinazolinonas/química , Zymomonas/enzimologia
5.
J Gene Med ; 22(12): e3265, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32864802

RESUMO

BACKGROUND: Congenital muscular dystrophy (CMD) refers to hypotonia and delayed motor development that is manifested at or near the birth. Additional presentations have been observed in CMD syndromes. METHODS: Thorough clinical examinations were performed on two unrelated Iranian families with typical symptoms of CMD and uncommon features such as intellectual disability and nephrolithiasis. The genomic DNA of probands were subjected to whole exome sequencing. Following the detection of candidate variants with a bioinformatic pipeline, the familial co-segregation analysis was carried out using polymerase chain reaction-based Sanger sequencing. RESULTS: We identified a missense homozygous variant in the fukutin-related protein (FKRP) gene (c.968G>A, p.Arg323His) related to CMD-dystroglycanopathy type B5 (MDDGB5) and a frameshift homozygous variant in the selenoprotein N (SELENON) gene (c.1446delC, p.Asn483Thrfs*11) associated with congenital rigid-spine muscular dystrophy 1 (RSMD1), which were completely segregated with the phenotypes in the families. These variants were not found in either the 1000 Genomes Project or the Exome Aggregation Consortium. The present study provides the first report of these homozygous sequence variants in Iran. Moreover, our study was the first observation of nephrolithiasis in FKRP-related dystroglycanopathy and intellectual disability in SELENON-related myopathies. Based on in silico studies and molecular docking, these variations induced pathogenic effects on the proteins. CONCLUSIONS: Our findings extend the genetic database of Iranian patients with CMD and, in general, the phenotypical spectrum of syndromic CMD. It is recommended to consider these variants for a more accurate clinical interpretation, prenatal diagnosis and genetic counseling in families with a history of CMD, especially in those combined with cognitive impairments or renal dysfunctions.


Assuntos
Homozigoto , Corpos de Mallory/patologia , Proteínas Musculares/genética , Distrofias Musculares/patologia , Mutação , Pentosiltransferases/genética , Fenótipo , Escoliose/patologia , Selenoproteínas/genética , Criança , Feminino , Humanos , Irã (Geográfico) , Masculino , Corpos de Mallory/genética , Simulação de Acoplamento Molecular , Proteínas Musculares/química , Distrofias Musculares/genética , Linhagem , Pentosiltransferases/química , Prognóstico , Escoliose/genética , Selenoproteínas/química
6.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093094

RESUMO

The enzymatic synthesis of nucleoside analogues has been shown to be a sustainable and efficient alternative to chemical synthesis routes. In this study, dihalogenated nucleoside analogues were produced by thermostable nucleoside phosphorylases in transglycosylation reactions using uridine or thymidine as sugar donors. Prior to the enzymatic process, ideal maximum product yields were calculated after the determination of equilibrium constants through monitoring the equilibrium conversion in analytical-scale reactions. Equilibrium constants for dihalogenated nucleosides were comparable to known purine nucleosides, ranging between 0.071 and 0.081. To achieve 90% product yield in the enzymatic process, an approximately five-fold excess of sugar donor was needed. Nucleoside analogues were purified by semi-preparative HPLC, and yields of purified product were approximately 50% for all target compounds. To evaluate the impact of halogen atoms in positions 2 and 6 on the antiproliferative activity in leukemic cell lines, the cytotoxic potential of dihalogenated nucleoside analogues was studied in the leukemic cell line HL-60. Interestingly, the inhibition of HL-60 cells with dihalogenated nucleoside analogues was substantially lower than with monohalogenated cladribine, which is known to show high antiproliferative activity. Taken together, we demonstrate that thermodynamic calculations and small-scale experiments can be used to produce nucleoside analogues with high yields and purity on larger scales. The procedure can be used for the generation of new libraries of nucleoside analogues for screening experiments or to replace the chemical synthesis routes of marketed nucleoside drugs by enzymatic processes.


Assuntos
Antineoplásicos , Hidrocarbonetos Halogenados , Leucemia/tratamento farmacológico , Nucleosídeos de Purina , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HL-60 , Humanos , Hidrocarbonetos Halogenados/síntese química , Hidrocarbonetos Halogenados/química , Hidrocarbonetos Halogenados/farmacologia , Leucemia/metabolismo , Leucemia/patologia , Pentosiltransferases/química , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Termodinâmica
7.
Biochemistry ; 58(7): 951-964, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30640434

RESUMO

Cobamides are coenzymes used by cells from all domains of life but made de novo by only some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate the product prior to the release of the biologically active coenzyme. In bacteria, a phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The enzyme from Salmonella enterica ( SeCobT) has been extensively biochemically and structurally characterized. The crystal structure of the putative PRTase from the archaeum Methanocaldococcus jannaschii ( MjCobT) is known, but its function has not been validated. Here we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTases. We also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Cobamidas/biossíntese , Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/metabolismo , Concentração de Íons de Hidrogênio , Mathanococcus/enzimologia , Mathanococcus/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Concentração Osmolar , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Filogenia , Compostos de Potássio/química , Compostos de Potássio/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Especificidade por Substrato
8.
Chembiochem ; 20(24): 2996-3000, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31264760

RESUMO

The use of nucleoside 2'-deoxyribosyltransferases (NDTs) as biocatalysts for the industrial synthesis of nucleoside analogues is often hindered by their strict preference for 2'-deoxyribonucleosides. It is shown herein that a highly versatile purine NDT from Trypanosoma brucei (TbPDT) can also accept ribonucleosides as substrates; this is most likely because of the distinct role played by Asn53 at a position that is usually occupied by Asp in other NDTs. Moreover, this unusual activity was improved about threefold by introducing a single amino acid replacement at position 5, following a structure-guided approach. Biophysical and biochemical characterization revealed that the TbPDTY5F variant is a homodimer that displays maximum activity at 50 °C and pH 6.5 and shows a remarkably high melting temperature of 69 °C. Substrate specificity studies demonstrate that 6-oxopurine ribonucleosides are the best donors (inosine>guanosine≫adenosine), whereas no significant preferences exist between 6-aminopurines and 6-oxopurines as base acceptors. In contrast, no transferase activity could be detected on xanthine and 7-deazapurines. TbPDTY5F was successfully employed in the synthesis of a wide range of modified ribonucleosides containing different purine analogues.


Assuntos
Pentosiltransferases/química , Pentosiltransferases/metabolismo , Ribonucleosídeos/metabolismo , Trypanosoma brucei brucei/enzimologia , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
9.
Chembiochem ; 20(23): 2936-2948, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31233657

RESUMO

4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.


Assuntos
Amino Açúcares/química , Proteínas de Bactérias/química , Lipídeo A/química , Pentosiltransferases/química , Amino Açúcares/síntese química , Burkholderia cenocepacia/enzimologia , Ensaios Enzimáticos , Escherichia coli/química , Organofosfatos/síntese química , Organofosfatos/química , Organofosfonatos/síntese química , Organofosfonatos/química , Especificidade por Substrato
10.
Org Biomol Chem ; 17(34): 7891-7899, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31397456

RESUMO

Insight into the catalytic mechanism of Lactobacillus leichmannii nucleoside 2'-deoxyribosyltransferase (LlNDT) has been gained by calculating a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape of the reaction within the enzyme active site. Our results support an oxocarbenium species as the reaction intermediate and thus an SN1 reaction mechanism in this family of bacterial enzymes. Our mechanistic proposal is validated by comparing experimental kinetic data on the impact of the single amino acid replacements Tyr7, Glu98 and Met125 with Ala, Asp and Ala/norLeu, respectively, and accounts for the specificity shown by this enzyme on a non-natural substrate. This work broadens our understanding of enzymatic C-N bond cleavage and C-N bond formation.


Assuntos
Pentosiltransferases/química , Domínio Catalítico , Cinética , Lactobacillus leichmannii/enzimologia , Modelos Químicos , Simulação de Dinâmica Molecular , Estudo de Prova de Conceito , Conformação Proteica , Teoria Quântica , Termodinâmica
11.
Biochemistry ; 57(26): 3953-3965, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29862811

RESUMO

The bacterial enzyme tRNA-guanine transglycosylase (TGT) is involved in the biosynthesis of queuosine, a modified nucleoside present in the anticodon wobble position of tRNAHis, tRNATyr, tRNAAsp, and tRNAAsn. Although it forms a stable homodimer endowed with two active sites, it is, for steric reasons, able to bind and convert only one tRNA molecule at a time. In contrast, its mammalian counterpart constitutes a heterodimer consisting of a catalytic and a noncatalytic subunit, termed QTRT1 and QTRT2, respectively. Both subunits are homologous to the bacterial enzyme, yet only QTRT1 possesses all the residues required for substrate binding and catalysis. In mice, genetic inactivation of the TGT results in the uncontrolled oxidation of tetrahydrobiopterin and, accordingly, phenylketonuria-like symptoms. For this reason and because of the recent finding that mammalian TGT may be utilized for the treatment of multiple sclerosis, this enzyme is of potential medical relevance, rendering detailed knowledge of its biochemistry and structural architecture highly desirable. In this study, we performed the kinetic characterization of the murine enzyme, investigated potential quaternary structures of QTRT1 and QTRT2 via noncovalent mass spectrometry, and, finally, determined the crystal structure of the murine noncatalytic TGT subunit, QTRT2. In the crystal, QTRT2 is clearly present as a homodimer that is strikingly similar to that formed by bacterial TGT. In particular, a cluster of four aromatic residues within the interface of the bacterial TGT, which constitutes a "hot spot" for dimer stability, is present in a similar constellation in QTRT2.


Assuntos
Pentosiltransferases/química , Multimerização Proteica , Subunidades Proteicas/química , Animais , Cinética , Camundongos , Estrutura Quaternária de Proteína
12.
Glycobiology ; 28(11): 849-859, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169771

RESUMO

In multicellular organisms, glycosylation regulates various developmental signaling pathways including the Notch pathway. One of the O-linked glycans added to epidermal growth factor-like (EGF) repeats in animal proteins including the Notch receptors is the xylose-xylose-glucose-O oligosaccharide. Drosophila glucoside xylosyltransferase (Gxylt) Shams negatively regulates Notch signaling in specific contexts. Since Shams adds the first xylose residue to O-glucose, its loss-of-function phenotype could be due to the loss of the first xylose, the second xylose or both. To examine the contribution of the second xylose residues to Drosophila Notch signaling, we have performed biochemical and genetic analysis on CG11388, which is the Drosophila homolog of human xyloside xylosyltransferase 1 (XXYLT1). Experiments in S2 cells indicated that similar to human XXYLT1, CG11388 can add the second xylose to xylose-glucose-O glycans. Flies lacking both copies of CG11388 (Xxylt) are viable and fertile and do not show gross phenotypes indicative of altered Notch signaling. However, genetic interaction experiments show that in sensitized genetic backgrounds with decreased or increased Notch pathway components, loss of Xxylt promotes Delta-mediated activation of Notch. Unexpectedly, we find that in such sensitized backgrounds, even loss of one copy of the fly Gxylt shams enhances Delta-mediated Notch activation. Taken together, these data indicate that while the first xylose plays a key role in tuning the Delta-mediated Notch signaling in Drosophila, the second xylose has a fine-tuning role only revealed in sensitized genetic backgrounds.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Fator de Crescimento Epidérmico/química , Patrimônio Genético , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Humanos , Pentosiltransferases/genética , Receptores Notch/genética , Transdução de Sinais/genética , UDP Xilose-Proteína Xilosiltransferase
13.
Plant Cell Physiol ; 59(3): 554-565, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325159

RESUMO

Xylan is a major hemicellulose in both primary and secondary walls of grass species. It consists of a linear backbone of ß-1,4-linked xylosyl residues that are often substituted with monosaccharides and disaccharides. Xylosyl substitutions directly on the xylan backbone have not been reported in grass species, and genes responsible for xylan substitutions in grass species have not been well elucidated. Here, we report functional characterization of a rice (Oryza sativa) GT61 glycosyltransferase, XYXT1 (xylan xylosyltransferase1), for its role in xylan substitutions. XYXT1 was found to be ubiquitously expressed in different rice organs and its encoded protein was targeted to the Golgi, the site for xylan biosynthesis. When expressed in the Arabidopsis gux1/2/3 triple mutant, in which xylan was completely devoid of sugar substitutions, XYXT1 was able to add xylosyl side chains onto xylan. Glycosyl linkage analysis and comprehensive structural characterization of xylooligomers generated by xylanase digestion of xylan from transgenic Arabidopsis plants expressing XYXT1 revealed that the side chain xylosyl residues were directly attached to the xylan backbone at O-2, a substituent not present in wild-type Arabidopsis xylan. XYXT1 was unable to add xylosyl residues onto the arabinosyl side chains of xylan when it was co-expressed with OsXAT2 (Oryza sativa xylan arabinosyltransferase2) in the gux1/2/3 triple mutant. Furthermore, we showed that recombinant XYXT1 possessed an activity transferring xylosyl side chains onto xylooligomer acceptors, whereas recombinant OsXAT2 catalyzed the addition of arabinosyl side chains onto xylooligomer acceptors. Our findings from both an in vivo gain-of-function study and an in vitro recombinant protein activity assay demonstrate that XYXT1 is a novel ß-1,2-xylosyltransferase mediating the addition of xylosyl side chains onto xylan.


Assuntos
Oryza/enzimologia , Pentosiltransferases/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Arabidopsis/genética , Biocatálise , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Pentosiltransferases/química , Filogenia , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/metabolismo , UDP Xilose-Proteína Xilosiltransferase
14.
New Phytol ; 218(3): 1049-1060, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460505

RESUMO

Insights into the evolution of plant cell walls have important implications for comprehending these diverse and abundant biological structures. In order to understand the evolving structure-function relationships of the plant cell wall, it is imperative to trace the origin of its different components. The present study is focused on plant 1,4-ß-xylan, tracing its evolutionary origin by genome and transcriptome mining followed by phylogenetic analysis, utilizing a large selection of plants and algae. It substantiates the findings by heterologous expression and biochemical characterization of a charophyte alga xylan synthase. Of the 12 known gene classes involved in 1,4-ß-xylan formation, XYS1/IRX10 in plants, IRX7, IRX8, IRX9, IRX14 and GUX occurred for the first time in charophyte algae. An XYS1/IRX10 ortholog from Klebsormidium flaccidum, designated K. flaccidumXYLAN SYNTHASE-1 (KfXYS1), possesses 1,4-ß-xylan synthase activity, and 1,4-ß-xylan occurs in the K. flaccidum cell wall. These data suggest that plant 1,4-ß-xylan originated in charophytes and shed light on the origin of one of the key cell wall innovations to occur in charophyte algae, facilitating terrestrialization and emergence of polysaccharide-based plant cell walls.


Assuntos
Parede Celular/metabolismo , Carofíceas/enzimologia , Pentosiltransferases/metabolismo , Células Vegetais/metabolismo , Motivos de Aminoácidos , Vias Biossintéticas , Carofíceas/genética , Evolução Molecular , Células HEK293 , Humanos , Pentosiltransferases/química , Filogenia
15.
Chemistry ; 24(39): 9957-9967, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29939431

RESUMO

The intestinal disease shigellosis caused by Shigella bacteria affects over 120 million people annually. There is an urgent demand for new drugs as resistance against common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and controls the pathogenicity of Shigella flexneri. We report the synthesis of sugar-functionalized lin-benzoguanines addressing the ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration calorimetry and X-ray crystallography. Pocket occupancy was optimized by variation of size and protective groups of the sugars. The participation of a polycyclic water-cluster in the recognition of the sugar moiety was revealed. Acetonide-protected ribo- and psicofuranosyl derivatives are highly potent, benefiting from structural rigidity, good solubility, and metabolic stability. We conclude that sugar acetonides have a significant but not yet broadly recognized value in drug development.


Assuntos
Guanina/química , Pentosiltransferases/química , RNA de Transferência/química , Ribose/química , Açúcares/química , Zymomonas/química , Cristalografia por Raios X , Estrutura Molecular , Pentosiltransferases/metabolismo , Ligação Proteica , Solventes
16.
Mol Pharm ; 15(3): 737-742, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-28749687

RESUMO

Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.


Assuntos
Proteínas de Escherichia coli/química , Pentosiltransferases/química , RNA Mensageiro/química , Coloração e Rotulagem/métodos , Citidina/análogos & derivados , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , RNA Mensageiro/genética , Especificidade por Substrato , Proteína Vermelha Fluorescente
17.
J Comput Aided Mol Des ; 32(11): 1229-1245, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30196523

RESUMO

Here, we propose an in silico fragment-mapping method as a potential tool for fragment-based/structure-based drug discovery (FBDD/SBDD). For this method, we created a database named Canonical Subsite-Fragment DataBase (CSFDB) and developed a knowledge-based fragment-mapping program, Fsubsite. CSFDB consists of various pairs of subsite-fragments derived from X-ray crystal structures of known protein-ligand complexes. Using three-dimensional similarity-matching between subsites on one protein and another, Fsubsite compares the surface of a target protein with all subsites in CSFDB. When a local topography similar to the subsite is found on the surface, Fsubsite places a fragment combined with the subsite in CSFDB on the target protein. For validation purposes, we applied the method to the apo-structure of cyclin-dependent kinase 2 (CDK2) and identified four compounds containing three mapped fragments that existed in the list of known inhibitors of CDK2. Next, the utility of our fragment-mapping method for fragment-growing was examined on the complex structure of tRNA-guanine transglycosylase with a small ligand. Fsubsite mapped appropriate fragments on the same position as the binding ligand or in the vicinity of the ligand. Finally, a 3D-pharmacophore model was constructed from the fragments mapped on the apo-structure of heat shock protein 90-α (HSP90α). Then, 3D pharmacophore-based virtual screening was carried out using a commercially available compound database. The resultant hit compounds were very similar to a known ligand of HSP90α. As a result of these findings, this in silico fragment-mapping method seems to be a useful tool for computational FBDD and SBDD.


Assuntos
Simulação por Computador , Modelos Moleculares , Proteínas/química , Sítios de Ligação , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/química , Bases de Dados de Compostos Químicos , Descoberta de Drogas/métodos , Proteínas de Choque Térmico HSP90/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bases de Conhecimento , Ligantes , Pentosiltransferases/química , Ligação Proteica , Conformação Proteica , Proteínas/antagonistas & inibidores , Software
18.
Appl Microbiol Biotechnol ; 102(16): 6947-6957, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29872887

RESUMO

In our search for thermophilic and acid-tolerant nucleoside 2'-deoxyribosyltransferases (NDTs), we found a good candidate in an enzyme encoded by Chroococcidiopsis thermalis PCC 7203 (CtNDT). Biophysical and biochemical characterization revealed CtNDT as a homotetramer endowed with good activity and stability at both high temperatures (50-100 °C) and a wide range of pH values (from 3 to 7). CtNDT recognizes purine bases and their corresponding 2'-deoxynucleosides but is also proficient using cytosine and 2'-deoxycytidine as substrates. These unusual features preclude the strict classification of CtNDT as either a type I or a type II NDT and further suggest that this simple subdivision may need to be updated in the future. Our findings also hint at a possible link between oligomeric state and NDT's substrate specificity. Interestingly from a practical perspective, CtNDT displays high activity (80-100%) in the presence of several water-miscible co-solvents in a proportion of up to 20% and was successfully employed in the enzymatic production of several therapeutic nucleosides such as didanosine, vidarabine, and cytarabine.


Assuntos
Cianobactérias/enzimologia , Pentosiltransferases , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Temperatura Alta , Pentosiltransferases/biossíntese , Pentosiltransferases/química , Pentosiltransferases/genética , Pentosiltransferases/isolamento & purificação , Solventes/química , Especificidade por Substrato
19.
Nucleic Acids Res ; 44(6): e52, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26657632

RESUMO

Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure µs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.


Assuntos
Trifosfato de Adenosina/síntese química , Guanosina Trifosfato/síntese química , Marcação por Isótopo/métodos , Nucleotídeos/síntese química , Bacillus anthracis/química , Bacillus anthracis/genética , Isótopos de Carbono , Coronavirus Humano 229E/química , Coronavirus Humano 229E/genética , Creatina Quinase/química , Creatina Quinase/genética , Espectroscopia de Ressonância Magnética , Pentosiltransferases/química , Pentosiltransferases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Elementos de Resposta , Ribose/química , Ribose-Fosfato Pirofosfoquinase/química , Ribose-Fosfato Pirofosfoquinase/genética , Riboswitch , Transcrição Gênica
20.
Angew Chem Int Ed Engl ; 57(32): 10085-10090, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927035

RESUMO

The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, recognizes tRNA only as a homodimer and performs full nucleobase exchange at the wobble position. Active-site inhibitors block the enzyme function by competitively replacing tRNA. In solution, the wild-type homodimer dissociates only marginally, whereas mutated variants show substantial monomerization in solution. Surprisingly, one inhibitor transforms the protein into a twisted state, whereby one monomer unit rotates by approximately 130°. In this altered geometry, the enzyme is no longer capable of binding and processing tRNA. Three sugar-type inhibitors have been designed and synthesized, which bind to the protein in either the functionally competent or twisted inactive state. They crystallize with the enzyme side-by-side under identical conditions from the same crystallization well. Possibly, the twisted inactive form corresponds to a resting state of the enzyme, important for its functional regulation.


Assuntos
Pentosiltransferases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Estrutura Molecular , Pentosiltransferases/antagonistas & inibidores , Pentosiltransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA