Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 114(2): 237-243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356354

RESUMO

Calling males of Anastrepha obliqua release volatile compounds to attract conspecific males to form leks and females to mate. Male volatiles from Mexican and Brazilian populations of A. obliqua have been previously identified. However, there are differences in the number and identity of volatile compounds between the populations. These differences in volatile profiles may be due to male origin (e.g. wild or mass-reared flies) or methodological issues (e.g. sampling techniques). In this study, we evaluated the attractiveness of wild, laboratory non-irradiated, and laboratory-irradiated flies under semi-field conditions. Male volatiles were collected using dynamic headspace sampling (DHS) and solid-phase microextraction (SPME) techniques, and identified using gas chromatography-coupled mass spectrometry. The results showed no difference in the attractiveness of wild, laboratory non-irradiated, and irradiated males to females. However, the number of captured females differed according to the origin; wild and non-irradiated females were captured more frequently than the irradiated flies. A total of 21 compounds were found using SPME, whereas only 12 were collected using DHS, although the relative amounts of these compounds were higher than those obtained using the former sampling technique. In addition, only laboratory non-irradiated males released α-pinene and menthol, which have not been previously reported in this fruit fly species. Additionally, we identified novel compounds in A. obliqua; however, certain compounds previously reported were not detected. This study suggests that despite the qualitative and quantitative variations in the volatile profiles of A. obliqua males, their attractiveness was unaffected.


Assuntos
Tephritidae , Compostos Orgânicos Voláteis , Animais , Masculino , Compostos Orgânicos Voláteis/análise , Tephritidae/efeitos da radiação , Tephritidae/fisiologia , Feminino , Comportamento Sexual Animal , Microextração em Fase Sólida , México
2.
Bull Entomol Res ; 112(6): 807-817, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35762315

RESUMO

Doses of 40, 80, 120, and 160 Gy were applied to 5-, 6-, 7-, and 8-day-old Anastrepha obliqua larvae, which were exposed to the Neotropical-native braconids Doryctobracon crawfordi and Utetes anastrephae and the Asian braconid Diachasmimorpha longicaudata. These tests were performed to know the effect of the increase in host radiation on the emergence of the aforementioned parasitoids and the related consequences of oviposition on the host. The study was based on the fact that higher radiation doses may cause a decrease in the host immune activity. There was a direct relationship between the increase in radiation dose and the parasitoid emergence. Both, the weight and the mortality of the host larvae were not affected by radiation. Although the larval weight of the larvae was lower and the mortality was higher in the younger larvae. Both, the number of scars and immature stages per host puparium originated from the younger larvae were lower than those from older larvae. Only U. anastrephae superparasitized more at lower radiation. Superparasitism by D. longicaudata was more frequent at 160 Gy. Qualitative measurements of melanin in the larvae parasitized showed that the levels were lower with increasing radiation. As radiation doses increased, the antagonistic response of the A. obliqua larva was reduced. Host larvae aged 5- and 6-day-old irradiated at 120-160 Gy significantly improve parasitoid emergence. This evidence is relevant for the mass production of the three tested parasitoid species.


Assuntos
Himenópteros , Tephritidae , Feminino , Animais , Tephritidae/efeitos da radiação , Larva/efeitos da radiação , Oviposição , Doses de Radiação
3.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718645

RESUMO

Radiation is considered as a promising insect pest control strategy for minimizing postharvest yield losses. Among various techniques, irradiation is a method of choice as it induces lethal biochemical or molecular changes that cause a downstream cascade of abrupt physiological abnormalities at the cellular level. In this study, we evaluated the effect of 60Co-γ radiation on various developmental stages of Zeugodacus cucurbitae Coquillett and subsequent carry-over effects on the progeny. For this purpose, we treated eggs with 30- and 50-Gy radiation doses of 60Co-γ. We found that radiation significantly affected cellular antioxidants, insect morphology, and gene expression profiles. Our results indicate that in response to various doses of irradiation reactive oxygen species, catalase, peroxidase, and superoxide dismutase activities were increased along with a significant increase in the malondialdehyde (MDA) content. We observed higher mortality rates during the pupal stage of the insects that hatched from irradiated eggs (50 Gy). Furthermore, the life span of the adults was reduced in response to 50 Gy radiation. The negative effects carried over to the next generation were marked by significantly lower fecundity in the F1 generation of the irradiation groups as compared to control. The radiation induced morphological abnormalities at the pupal, as well as the adult, stages. Furthermore, variations in the gene expression following irradiation are discussed. Taken together, our results signify the utility of 60Co-γ radiation for fruit fly postharvest management.


Assuntos
Apoptose/efeitos da radiação , Raios gama , Expressão Gênica/efeitos da radiação , Tephritidae/efeitos da radiação , Animais , Antioxidantes/metabolismo , Antioxidantes/efeitos da radiação , Apoptose/genética , Catalase/metabolismo , Catalase/efeitos da radiação , Radioisótopos de Cobalto/farmacologia , Controle de Insetos/métodos , Proteínas de Insetos/metabolismo , Proteínas de Insetos/efeitos da radiação , Larva/genética , Larva/metabolismo , Larva/fisiologia , Larva/efeitos da radiação , Longevidade/efeitos da radiação , Malondialdeído/metabolismo , Malondialdeído/efeitos da radiação , Peroxidase/metabolismo , Peroxidase/efeitos da radiação , Controle de Pragas/métodos , Pupa/genética , Pupa/metabolismo , Pupa/fisiologia , Pupa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/fisiologia
4.
Bull Entomol Res ; 110(5): 630-637, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32419690

RESUMO

Doryctobracon areolatus is a native parasitoid of the Neotropical region that presents the highest percentages of natural parasitism of fruit flies of the genus Anastrepha. In the Moscafrut Program SADER-SENASICA, located in Metapa de Domínguez, Chiapas, Mexico, a laboratory colony of this species is maintained on Anastrepha ludens, the Mexican fruit fly, with the aim to scale the production of the parasitoid up to massive levels. In order to eliminate unwanted emergence of adult flies during the rearing process, this study evaluated the effect of irradiation (at doses of 20, 30, 40, and 50 Gy) applied to eggs, and first and second instar larvae of A. ludens; all irradiated stages were subsequently exposed as second instar larvae to adult females of D. areolatus. Irradiation did not affect the eclosion of A. ludens eggs but, at doses of 40 and 50 Gy, it did cause delayed larval development and pupation, as well as lower larval weight. Adult fly emergence was suppressed at all doses, except in eggs irradiated at 20 Gy. Doses of 20 and 30 Gy applied to the eggs and larvae did not affect the emergence, survival, fecundity or flight ability of the emerged parasitoids, but the second instar larvae were easily handled during the rearing process. Our results suggest that D. areolatus can be successfully produced in second instar larvae of A. ludens irradiated at 30 Gy.


Assuntos
Tephritidae/parasitologia , Tephritidae/efeitos da radiação , Vespas/crescimento & desenvolvimento , Animais , Agentes de Controle Biológico , Feminino , Voo Animal/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/efeitos da radiação , Masculino , Óvulo/efeitos da radiação , Tephritidae/crescimento & desenvolvimento , Vespas/fisiologia
5.
BMC Microbiol ; 19(Suppl 1): 281, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870300

RESUMO

BACKGROUND: Mass-rearing, domestication and gamma irradiation of tephritid fruit flies used in sterile insect technique (SIT) programmes can negatively impact fly quality and performance. Symbiotic bacteria supplied as probiotics to mass-reared fruit flies may help to overcome some of these issues. However, the effects of tephritid ontogeny, sex, diet and irradiation on their microbiota are not well known. RESULTS: We have used next-generation sequencing to characterise the bacterial community composition and structure within Queensland fruit fly, Bactrocera tryoni (Froggatt), by generating 16S rRNA gene amplicon libraries derived from the guts of 58 individual teneral and mature, female and male, sterile and fertile adult flies reared on artificial larval diets in a laboratory or mass-rearing environment, and fed either a full adult diet (i.e. sugar and yeast hydrolysate) or a sugar only adult diet. Overall, the amplicon sequence read volume in tenerals was low and smaller than in mature adult flies. Operational taxonomic units (OTUs), belonging to the families Enterobacteriaceae (8 OTUs) and Acetobacteraceae (1 OTU) were most prevalent. Enterobacteriaceae dominated laboratory-reared tenerals from a colony fed a carrot-based larval diet, while Acetobacteraceae dominated mass-reared tenerals from a production facility colony fed a lucerne chaff based larval diet. As adult flies matured, Enterobacteriaceae became dominant irrespective of larval origin. The inclusion of yeast in the adult diet strengthened this shift away from Acetobacteraceae towards Enterobacteriaceae. Interestingly, irradiation increased 16S rRNA gene sequence read volume. CONCLUSIONS: Our findings suggest that bacterial populations in fruit flies experience significant bottlenecks during metamorphosis. Gut bacteria in teneral flies were less abundant and less diverse, and impacted by colony origin. In contrast, mature adult flies had selectively increased abundances for some gut bacteria, or acquired these bacteria from the adult diet and environment. Furthermore, irradiation augmented bacterial abundance in mature flies. This implies that either some gut bacteria were compensating for damage caused by irradiation or irradiated flies had lost their ability to regulate bacterial load. Our findings suggest that the adult stage prior to sexual maturity may be ideal to target for probiotic manipulation of fly microbiota to increase fly performance in SIT programmes.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/efeitos da radiação , RNA Ribossômico 16S/genética , Tephritidae/fisiologia , Ração Animal , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos da radiação , DNA Bacteriano/genética , DNA Ribossômico/genética , Domesticação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Filogenia , Análise de Sequência de RNA , Tephritidae/microbiologia , Tephritidae/efeitos da radiação
6.
Bull Entomol Res ; 107(6): 734-741, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28485267

RESUMO

Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.


Assuntos
Controle de Insetos/métodos , Melaninas/metabolismo , Tephritidae/imunologia , Animais , Beauveria , Terapia de Imunossupressão , Larva/metabolismo , Larva/efeitos da radiação , Tephritidae/metabolismo , Tephritidae/efeitos da radiação
7.
Arch Insect Biochem Physiol ; 92(3): 192-209, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27079560

RESUMO

The sterile insect technique (SIT) was developed to eradicate the new world screwworm from the southern United States and Mexico, and became a component of many area-wide integrated pest management programs, particularly useful in managing tephritid fruit flies. SIT is based on the idea of rearing and sterilizing male pests, originally by ionizing radiation, and then releasing into field, where they compete for and mate with wild females. Mating with sterile males leads to reduced fecundity to lower pest populations. There are concerns with the use and distribution of radioisotopes for SIT programs, which have led to developing X-ray irradiation protocols to sterilize insects. We considered the possibility that X-ray irradiation exerts sublethal impacts aside form sterilizing insects. Such effects may not be directly observable, which led us to the hypothesis that X-ray irradiation in one life stage creates alterations in biological fitness and protein expression in the subsequent stage. We tested our hypothesis by irradiating larvae of Bactrocera dorsalis. There are two major points. One, exposing larvae to X-ray treatments led to reduced adult emergence, fecundity, fertility, and flight capacity from the corresponding pupae and emerged adults. Two, the X-ray treatments led to substantial expression changes in 27 pupal proteins. We assorted the 67 spots representing these proteins into three groups, metabolism, development, and structure. Our interpretation is these X-ray induced changes in biological performance and protein expression indicate their adult counterparts may be disabled in their abilities to successfully compete for and mate wild females in native habitats.


Assuntos
Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Insetos/genética , Tephritidae/genética , Tephritidae/efeitos da radiação , Animais , Eletroforese em Gel Bidimensional , Fertilidade/efeitos da radiação , Voo Animal/efeitos da radiação , Aptidão Genética/efeitos da radiação , Proteínas de Insetos/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/efeitos da radiação , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/efeitos da radiação , Análise de Sequência de DNA , Tephritidae/crescimento & desenvolvimento , Tephritidae/metabolismo
8.
Bull Entomol Res ; 106(3): 415-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26898660

RESUMO

The effect of a sub-sterilizing gamma radiation dose on Dacus ciliatus adults was investigated to assess the suitability of the sterile insect technique (SIT) as an alternative method to control this pest. Late pupae (48 h prior to adult emergence) from a laboratory strain were irradiated with 120 Gy of gamma rays emitted by a 60Co source. Following adult emergence, the mortality of irradiated and non-irradiated cohorts was recorded. Over a period of 50 days after emergence, no significant negative effects of irradiation upon the longevity of male or female laboratory flies were observed. A laboratory competitiveness study (Fried test), using irradiated laboratory and wild males at a ratio of 3:1 was conducted to assess the ability of irradiated males to reduce the egg hatch rates of a wild population. The overall competitiveness was found to be ca. 0.32, suggesting a reduced, but satisfactory, quality of irradiated laboratory as compared with wild males. Based on the above findings, we calculated and proposed effective male release ratios for field application of SIT against D. ciliatus.


Assuntos
Raios gama , Longevidade/efeitos da radiação , Controle Biológico de Vetores/métodos , Comportamento Sexual Animal/efeitos da radiação , Tephritidae/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Pupa/efeitos da radiação , Tephritidae/crescimento & desenvolvimento , Tephritidae/fisiologia
9.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27638956

RESUMO

As the incidence of Anastrepha fraterculus (Wiedemann) has increased in Southern Brazil in the past 3 yr, an initiative to release sterile flies and parasitoids has started. In order to make feasible the mass-rearing of the parasitoid Diachasmimorpha longicaudata (Ashmed), this study investigated the suitability of A. fraterculus larvae derived from irradiated eggs as host for D. longicaudata Two different ages of A. fraterculus eggs (24 and 48 h old) were analyzed for hatchability after the exposure to a range of radiation doses. The hatchability of 48-h-old eggs was not affected by radiation, and no fly emerged at doses higher than 27.5 Gy. The larvae derived from irradiated eggs proved to be suitable hosts for the parasitoid development, with observed parasitism rates higher than 70% and sex ratio values above 0.6. The parasitism capability and longevity of D. longicaudata reared on larvae derived from irradiated eggs were also assessed. During the 10 d of parasitism evaluated, D. longicaudata from the treatments were able to parasitize nonirradiated larvae similarly as the parasitoids from controls and the laboratory colony. The longevity of D. longicaudata from the treatments was not affected either, with survival rates higher than 80% after 20 d of evaluation. The age of 48 h and a dose of 30 Gy could be considered the best age and dose for A. fraterculus eggs to be used in the mass-rearing of D. longicaudata The results of this study will decrease the costs of mass-rearing D. longicaudata on A. fraterculus.


Assuntos
Himenópteros/fisiologia , Óvulo/efeitos da radiação , Controle Biológico de Vetores/métodos , Tephritidae/parasitologia , Tephritidae/efeitos da radiação , Animais , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Larva/efeitos da radiação , Exposição à Radiação/análise , Tephritidae/crescimento & desenvolvimento
10.
Apoptosis ; 20(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25433919

RESUMO

Transcriptional activation of pro-apoptotic genes in response to cytotoxic stimuli is a conserved feature of the cell death pathway in metazoans. However, understanding the extent of this conservation in insects has been limited by the lack of known pro-apoptotic genes in non-drosophilids. Recently, we described the pro-apoptotic genes, Asrpr and Ashid, from the tephritid, Anastrepha suspensa, that now allow us to explore the conservation of pro-apoptotic gene regulation between a tephritid and drosophilids. In this study, we determined the developmental profiles of Asrpr and Ashid transcripts during embryogenesis and in embryos exposed to γ-irradiation. Transcript levels of both genes determined by qRT-PCR were low throughout embryogenesis, with strong Ashid expression occurring during early to mid-embryogenesis and Asrpr expression peaking in late embryogenesis. This correlated to acridine orange stained apoptotic cells first appearing at 17 h and increasing over time. However, when irradiated at 16 h post-oviposition embryos exhibited significant levels of apoptosis consistent with strong induction of Asrpr and Ashid transcript levels by γ-irradiation in young embryos <24 h post-oviposition. Furthermore, embryos irradiated <24 h post-oviposition failed to hatch, those irradiated between 24 and 32 h had increased hatching rates, but between 48 and 72 h irradiation had no effect on egg hatching. This indicates a transition of embryos from an irradiation-sensitive to irradiation-resistance stage between 24 and 48 h. Throughout post-embryonic development, the two pro-apoptotic genes share similar patterns of up-regulated gene expression, which correlate to ecdysone-induced developmental events, especially during metamorphosis. Together these results provide the first direct evidence for a conserved molecular mechanism of the programmed cell death pathway in insects.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Raios gama , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Metamorfose Biológica/genética , Tephritidae/genética , Animais , Apoptose/efeitos da radiação , Embrião não Mamífero/efeitos da radiação , Proteínas de Insetos/genética , Metamorfose Biológica/efeitos da radiação , Tephritidae/efeitos da radiação
11.
J Econ Entomol ; 108(1): 88-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26470107

RESUMO

The fruit fly Bactrocera tau (Walker) is an important quarantine pest that damages fruits and vegetables throughout Asian regions. Host commodities shipped from infested areas should undergo phytosanitary measures to reduce the risk of shipping viable flies. The dose-response tests with 1-d-old eggs and 3-, 5-, 7-, 8-d-old larvae were initiated to determine the most resistant stages in fruits, and the minimum dose for 99.9968% prevention of adult eclosion at 95% confidence level was validated in the confirmatory tests. The results showed that 1) the pupariation rate was not affected by gamma radiation except for eggs and first instars, while the percent of eclosion was reduced significantly in all instars at all radiation dose; 2) the tolerance to radiation increased with increasing age and developmental stage; 3) the estimated dose to 99.9968% preventing adult eclosion from late third instars was 70.9 Gy (95% CL: 65.6-78.2, probit model) and 71.8 Gy (95% CL: 63.0-87.3, logit model); and iv) in total, 107,135 late third instars cage infested in pumpkin fruits were irradiated at the target dose of 70 Gy (62.5-85.0, Gy measured), which resulted in no adult emergence in the two confirmatory tests. Therefore, a minimum dose of 85 and 72 Gy, which could prevent adult emergence at the efficacy of 99.9972 and 99.9938% at the 95% confidence level, respectively, can be recommended as a minimum dose for phytosanitary treatment of B. tau in any host fruits and vegetables under ambient atmospheres.


Assuntos
Cucurbita , Raios gama , Tephritidae/efeitos da radiação , Animais , Parasitologia de Alimentos , Larva/efeitos da radiação , Óvulo/efeitos da radiação , Pupa/efeitos da radiação , Tephritidae/crescimento & desenvolvimento
12.
BMC Genet ; 15 Suppl 2: S12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25471175

RESUMO

Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.


Assuntos
Controle Biológico de Vetores , Tephritidae/genética , Animais , Argentina , Biotecnologia , Cromossomos de Insetos/efeitos da radiação , Feminino , Genética Populacional , Infertilidade/genética , Masculino , Controle Biológico de Vetores/métodos , Radiação , Doses de Radiação , Comportamento Sexual Animal , Tephritidae/fisiologia , Tephritidae/efeitos da radiação
13.
Bull Entomol Res ; 104(2): 176-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24345386

RESUMO

Fruit flies (Diptera: Tephritidae) are major pests worldwide. The sterile insect technique, where millions of flies are reared, sterilized by irradiation and then released, is one of the most successful and ecologically friendly methods of controlling populations of these pests. The mating behaviour of irradiated and non-irradiated flies has been compared in earlier studies, but there has been little attention paid to the anti-predator behaviour of mass-reared flies, especially with respect to wild flies. Tephritid flies perform a supination display to their jumping spider predators in order to deter attacks. In this study, we evaluated the possibility of using this display to determine the anti-predator capabilities of mass-reared irradiated, non-irradiated flies, and wild flies. We used an arena setup and observed bouts between jumping spiders (Phidippus audax Hentz) and male Mexican fruit flies (Anastrepha ludens Loew). We show that although all flies performed a supination display to their predator, wild flies were more likely to perform a display and were significantly more successful in avoiding attack than mass-reared flies. We suggest that this interaction can be used to develop a rapid realistic method of quality control in evaluating anti-predator abilities of mass-reared fruit flies.


Assuntos
Comportamento Animal/efeitos da radiação , Controle Biológico de Vetores , Tephritidae/efeitos da radiação , Animais , Feminino , Masculino , Aranhas
14.
J Econ Entomol ; 107(3): 1172-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25026679

RESUMO

The sterile insect technique has been routinely used to eradicate fruit fly Bactrocera tryoni (Froggatt) incursions. This study considers whether fly quality in a mass-rearing facility can be improved by reducing irradiation doses, without sacrificing reproductive sterility. Pupae were exposed to one of five target irradiation dose ranges: 0, 40-45, 50-55, 60-65, and 70-75 Gy. Pupae were then assessed using routine quality control measures: flight ability, sex ratio, longevity under nutritional stress, emergence, and reproductive sterility. Irradiation did not have a significant effect on flight ability or sex ratio tests. Longevity under nutritional stress was significantly increased at 70-75 Gy, but no other doses differed from 0 Gy. Emergence was slightly reduced in the 50-55, 60-65, and 70-75 Gy treatments, but 40-45 Gy treatments did not differ from 0 Gy, though confounding temporal factors complicate interpretation. Reproductive sterility remained acceptable (> 99.5%) for all doses--40-45 Gy (99.78%), 50-55 Gy (100%), 60-65 Gy (100%), and 70-75 Gy (99.99%). We recommend that B. tryoni used in sterile insect technique releases be irradiated at a target dose of 50-55 Gy, providing improved quality and undiminished sterility in comparison with the current 70-75 Gy standard while also providing a substantial buffer against risk of under dosing.


Assuntos
Controle Biológico de Vetores/métodos , Tephritidae/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Feminino , Voo Animal/efeitos da radiação , Longevidade/efeitos da radiação , Masculino , New South Wales , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Pupa/efeitos da radiação , Controle de Qualidade , Reprodução/efeitos da radiação , Razão de Masculinidade , Tephritidae/crescimento & desenvolvimento , Tephritidae/fisiologia
15.
Mutagenesis ; 28(5): 531-41, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793612

RESUMO

The response of eukaryotic cells to ionising radiation (IR)-induced double-strand DNA breaks is highly conserved and involves a DNA repair mechanism characterised by the early phosphorylation of histone protein H2AX (producing the active form γH2AX). Although the expression of an induced γH2AX variant has been detected in Drosophila melanogaster, the expression and radiation response of a γH2AX homologue has not been reported in economically important fruit flies. We use Bactrocera tryoni (Diptera: Tephritidae, Queensland fruit fly or 'Q-fly') to investigate this response with a view to developing molecular assays to detect/quantify exposure of fruit flies to IR and consequent DNA damage. Deep sequencing confirmed the presence of a H2AX homologue that we have termed H2AvB (i.e. variant Bactrocera) and has an identical sequence to a histone reported from the human disease vector Glossina morsitans. A linear dose-response of γH2AvB (0-400 Gy IR) was observed in whole Q-fly pupal lysates 24h post-IR and was detected at doses as low as 20 Gy. γH2AvB signal peaked at ~20min after IR exposure and at 24h post-IR the signal remained elevated but declined significantly by 5 days. Persistent and dose-dependent γH2AvB signal could be detected and quantified either by western blot or by laser scanning cytometry up to 17 days post-IR exposure in histone extracts or isolated nuclei from adult Q-flies (irradiated as pupae). We conclude that IR exposure in Q-fly leads to persistent γH2AvB signals (over a period of days) that can easily be detected by western blot or quantitative immunofluorescence techniques. These approaches have potential as the basis for assays for detection and quantification of prior IR exposure in pest fruit flies.


Assuntos
Histonas/metabolismo , Proteínas de Insetos/metabolismo , Radiação Ionizante , Tephritidae/efeitos da radiação , Sequência de Aminoácidos , Animais , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Drosophila melanogaster/genética , Histonas/genética , Proteínas de Insetos/genética , Citometria de Varredura a Laser , Dados de Sequência Molecular , Fosforilação/efeitos da radiação , Pupa/efeitos da radiação , Homologia de Sequência de Aminoácidos , Tephritidae/genética , Moscas Tsé-Tsé/genética
16.
J Econ Entomol ; 106(5): 2020-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224242

RESUMO

Modified atmosphere packaging (MAP) produces a low-oxygen (O2) environment that can increase produce shelf life by decreasing product respiration and growth of pathogens. However, low O2 is known to increase insect tolerance to irradiation, and the use of MAP with products treated by irradiation before export to control quarantine pests may inadvertently compromise treatment efficacy. Melon fly, Bactrocera cucurbitae Coquillet (Diptera: Tephritidae), is an important economic and quarantine pest of tropical fruits and vegetables, and one of the most radiation-tolerant tephritid fruit flies known. The effect of low O2 generated by MAP on the radiation tolerance of B. cucurbitae was examined. Third-instar larval B. cucurbitae were inoculated into ripe papayas and treated by 1) MAP + irradiation, 2) irradiation alone, 3) MAP alone, or (4) no MAP and no irradiation, and held for adult emergence. Three types of commercially available MAP products were tested that produced O2 concentrations between 1 and 15%, and a sublethal radiation dose (50 Gy) was used to allow comparisons between treatments. Ziploc storage bags (1-4% O2) increased survivorship to adult from 14 to 25%, whereas Xtend PP61 bags (3-8% O2) and Xtend PP53 bags (11-15% O2) did not enhance survivorship to the adult stage in B. cucurbitae irradiated at 50 Gy. Radiation doses approved by the United States Department of Agriculture and the International Plant Protection Commission for B. cucurbitae and Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) are 150 and 100 Gy, respectively. In large-scale tests, 9,000 B. cucurbitae and 3,800 C. capitata larvae infesting papayas in Ziploc bags were irradiated at 150 and 100 Gy, respectively, with no survivors to the adult stage. MAP can increase insect survivorship during irradiation treatment at certain doses and O2 concentrations, but should not compromise the efficacy of the 150-Gy generic radiation treatment for tephritid fruit flies or the 100-Gy radiation treatment for C. capitata.


Assuntos
Oxigênio/metabolismo , Tolerância a Radiação , Tephritidae/efeitos da radiação , Animais , Carica/crescimento & desenvolvimento , Ceratitis capitata/crescimento & desenvolvimento , Ceratitis capitata/fisiologia , Ceratitis capitata/efeitos da radiação , Controle de Insetos , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Embalagem de Produtos , Pupa/crescimento & desenvolvimento , Pupa/efeitos da radiação , Tephritidae/crescimento & desenvolvimento , Tephritidae/fisiologia
17.
J Econ Entomol ; 106(5): 2035-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224244

RESUMO

Cold storage is used to preserve fruit quality after harvest during transportation in marketing channels. Low temperature can be a stressor for insects that reduces survivorship, and cold storage may contribute to the efficacy of postharvest quarantine treatments such as irradiation against quarantine insect pests. The combined effect of irradiation and cold storage was examined in a radiation-tolerant fruit fly, Bactrocera cucurbitae Coquillet (melon fly), and a radiation-intolerant fruit fly, Ceratitis capitata (Wiedemann) (Mediterranean fruit fly) (Diptera: Tephritidae). Third instars on diet or in papaya were treated with a sublethal radiation dose of 30 Gy and stored at 4 or 11 degrees C for 3-13 d and held for adult emergence. For both fruit fly species, survival of third instars to the adult stage generally decreased with increasing cold storage duration at 4 or 11 degrees C in diet or papaya. Survivorship differences were highly significant for the effects of substrate (diet > papaya), temperature (11 > 4 degrees C),and irradiation (0 > 30 Gy). Few Mediterranean fruit flies survived in any cold storage treatment after receiving a radiation dose of 30 Gy. No melon fly larvae survived to the adult stage after irradiation and 11 d cold storage at 4 or 11 degrees C in papayas. Cold storage enhances the efficacy and widens the margin of security in postharvest irradiation treatments. Potentially irradiation and cold storage can be used in combination to reduce the irradiation exposure requirements of quarantine treatments.


Assuntos
Controle de Insetos/métodos , Quarentena/métodos , Tephritidae/fisiologia , Tephritidae/efeitos da radiação , Animais , Carica , Ceratitis capitata/crescimento & desenvolvimento , Ceratitis capitata/fisiologia , Ceratitis capitata/efeitos da radiação , Temperatura Baixa , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Pupa/efeitos da radiação , Tolerância a Radiação , Distribuição Aleatória , Especificidade da Espécie , Tephritidae/crescimento & desenvolvimento
18.
J Exp Biol ; 215(Pt 12): 2150-61, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22623204

RESUMO

Most organisms are repeatedly exposed to oxidative stress from multiple sources throughout their lifetimes, potentially affecting all aspects of organismal performance. Here we test whether exposure to a conditioning bout of anoxia early in adulthood induces a hormetic response that confers resistance to oxidative stress and enhances male sexual performance later in life in the Caribbean fruit fly, Anastrepha suspensa. Anoxic conditioning of adults prior to emergence led to an increase in antioxidant capacity driven by mitochondrial superoxide dismutase and glutathione peroxidase. When exposed to gamma irradiation, a strong oxidative stressor, males that received anoxic conditioning had lower lipid and protein oxidative damage at sexual maturity. Anoxia conditioning led to greater male sexual competitiveness compared with unconditioned males when both were irradiated, although there was no effect of anoxia conditioning on mating competitiveness in unirradiated males. Anoxia also led to higher adult emergence rates and greater flight ability in irradiation-stressed flies while preserving sterility. Thus, hormetic treatments that increased antioxidant enzyme activity also improved male performance after irradiation, suggesting that antioxidant enzymes play an important role in mediating the relationship between oxidative stress and sexual selection. Furthermore, our work has important applied implications for the sterile insect technique (SIT), an environmentally friendly method of insect pest control where males are sterilized by irradiation and deployed in the field to disrupt pest populations via mating. We suggest that hormetic treatments specifically designed to enhance antioxidant activity may produce more sexually competitive sterile males, thus improving the efficacy and economy of SIT programs.


Assuntos
Hipóxia , Estresse Oxidativo/efeitos da radiação , Comportamento Sexual Animal/efeitos da radiação , Tephritidae/fisiologia , Tephritidae/efeitos da radiação , Animais , Feminino , Raios gama , Glutationa Peroxidase/metabolismo , Hipóxia/metabolismo , Masculino , Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Tephritidae/metabolismo
19.
J Insect Sci ; 12: 45, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22957485

RESUMO

As an initial step to improve the efficiency of the sterile insect technique applied to eradicate, suppress, and control wild Anastrepha obliqua (Macquart) (Diptera: Tephritidae) in mango producing areas of Mexico, the effect of radiation dose and mass rearing history on male mating performance was examined. Field cage tests in which both male and female laboratory flies were irradiated at different doses (0, 40, and 80 Gy) were released with cohorts of wild flies of both sexes, revealing that both mass rearing history and irradiation affected male mating performance. Laboratory males were accepted for copulation by wild females less frequently than wild males. Copulations involving laboratory males were shorter than those involving wild males. Irradiated males mated less frequently with wild females than wild males, and irradiated females appeared to be less able to reject courting males of both origins. High levels of fertility for untreated laboratory females crossed with males irradiated at different doses may reflect problems in mass rearing affecting homogeneity of pupal age before irradiation, and possibly masked a dose effect. Proposed remedial measures to improve male mating performance are discussed.


Assuntos
Copulação , Controle Biológico de Vetores/métodos , Tephritidae/fisiologia , Tephritidae/efeitos da radiação , Anacardiaceae , Animais , Feminino , Larva/fisiologia , Larva/efeitos da radiação , Masculino , Mangifera , México
20.
J Econ Entomol ; 104(5): 1509-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22066179

RESUMO

Bactrocera latifrons (Hendel) (Diptera: Tephritidae) is a quarantine pest of several solanaceous crops and tropical fruits that are treated using irradiation before export from Hawaii to the U.S. mainland. A dose of 150 Gy is approved as a generic irradiation treatment for tephritid fruit flies, but no confirmation of efficacy has been reported for B. latifrons. Dose response of B. latifrons was used to determine the most tolerant life stage and identify a dose that prevents adult emergence. Data indicated doses (plus 95% confidence limits) required to prevent adult emergence of 13.4 (10.0-29.6), 17.5 (14.4-24.8), and 88.1 (68.0-133.8) Gy for eggs, first instars and third instars, respectively. In large-scale confirmatory tests of the most radiotolerant life stage, a radiation dose of 150 Gy applied to B. latifrons late third instars in bell peppers (Capsicum annuum L.) resulted in no survival to the adult stage of 157,112 individuals, a treatment efficacy consistent with Probit 9-level mortality. The relative radiotolerance of melon fly Bactrocera cucurbitae Coquillet, and B. latifrons also was tested using a diagnostic radiation dose of 30 Gy. In diet, a mean of 6.9% of irradiated B. cucurbitae third instars developed to the adult stage, whereas no B. latifrons third instars developed to adults. In papaya, Carica papaya L., fruit, a mean of 3.3% of irradiated B. cucurbitae third instars developed to the adult stage, whereas 0.5% B. latifrons third instars developed to adults. This report supports the use of a generic radiation dose of 150 Gy in quarantine scenarios to control tephritid fruit flies on fresh commodities.


Assuntos
Capsicum , Carica , Irradiação de Alimentos/métodos , Controle de Insetos/métodos , Tephritidae/efeitos da radiação , Animais , Frutas , Havaí , Estágios do Ciclo de Vida , Doses de Radiação , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA