Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neurosci ; 132(1): 1-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32672480

RESUMO

MATERIALS AND METHODS: Locomotor outcomes in perforin-deficient (Pfp-/-) mice and wild-type littermate controls were measured after severe compression injury of the lower thoracic spinal cord up to six weeks after injury. RESULTS: According to both the Basso mouse scale score and single frame motion analysis, motor recovery of Pfp-/- mice was similar to wild-type controls. Interestingly, immunohistochemical analysis of cell types at six weeks after injury showed enhanced cholinergic reinnervation of spinal motor neurons caudal to the lesion site and neurofilament-positive structures at the injury site in Pfp-/- mice, whereas numbers of microglia/macrophages and astrocytes were decreased compared with controls. CONCLUSIONS: We conclude that, although, loss of perforin does not change the locomotor outcome after injury, it beneficially affects diverse cellular features, such as number of axons, cholinergic synapses, astrocytes and microglia/macrophages at or caudal to the lesion site. Perforin's ability to contribute to Rag2's influence on locomotion was observed in mice doubly deficient in perforin and Rag2 which recovered better than Rag2-/- or Pfp-/- mice, suggesting that natural killer cells can cooperate with T- and B-cells in spinal cord injury.


Assuntos
Locomoção/fisiologia , Regeneração Nervosa/fisiologia , Proteínas Citotóxicas Formadoras de Poros/fisiologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Citotóxicas Formadoras de Poros/deficiência
2.
J Neuroinflammation ; 18(1): 50, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602274

RESUMO

BACKGROUND: The pathological process of traumatic spinal cord injury (SCI) involves excessive activation of microglia leading to the overproduction of proinflammatory cytokines and causing neuronal injury. Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P), plays an important role in mediating inflammation, cell proliferation, survival, and immunity. METHODS: We aim to investigate the mechanism and pathway of the Sphk1-mediated neuroinflammatory response in a rodent model of SCI. Sixty Sprague-Dawley rats were randomly assigned to sham surgery, SCI, or PF543 (a specific Sphk1 inhibitor) groups. Functional outcomes included blinded hindlimb locomotor rating and inclined plane test. RESULTS: We discovered that Sphk1 is upregulated in injured spinal cord tissue of rats after SCI and is associated with production of S1P and subsequent NF-κB p65 activation. PF543 attenuated p65 activation, reduced inflammatory response, and relieved neuronal damage, leading to improved functional recovery. Western blot analysis confirmed that expression of S1P receptor 3 (S1PR3) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) are activated in microglia of SCI rats and mitigated by PF543. In vitro, we demonstrated that Bay11-7085 suppressed NF-κB p65 and inhibited amplification of the inflammation cascade by S1P, reducing the release of proinflammatory TNF-α. We further confirmed that phosphorylation of p38 MAPK and activation of NF-κB p65 is inhibited by PF543 and CAY10444. p38 MAPK phosphorylation and NF-κB p65 activation were enhanced by exogenous S1P and inhibited by the specific inhibitor SB204580, ultimately indicating that the S1P/S1PR3/p38 MAPK pathway contributes to the NF-κB p65 inflammatory response. CONCLUSION: Our results demonstrate a critical role of Sphk1 in the post-traumatic SCI inflammatory cascade and present the Sphk1/S1P/S1PR3 axis as a potential target for therapeutic intervention to control neuroinflammation, relieve neuronal damage, and improve functional outcomes in SCI.


Assuntos
Mediadores da Inflamação/metabolismo , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Traumatismos da Medula Espinal/enzimologia , Animais , Feminino , Metanol/farmacologia , Metanol/uso terapêutico , Camundongos , Neurônios/patologia , Células PC12 , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Vértebras Torácicas/lesões
3.
Neurochem Res ; 46(9): 2297-2306, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34086144

RESUMO

As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.


Assuntos
Benzofuranos/uso terapêutico , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Claudina-5/metabolismo , Feminino , Glucose/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Ocludina/metabolismo , Oxigênio/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/enzimologia
4.
J Cell Physiol ; 235(5): 4605-4617, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663116

RESUMO

Spinal cord injury (SCI) is a devastating disease. Strategies that enhance the intrinsic regenerative ability are very important for the recovery of SCI to radically prevent the occurrence of sensory disorders. Epidermal growth factor (EGF) showed a limited effect on the growth of primary sensory neuron neurites due to the degradation of phosphorylated-epidermal growth factor receptor (p-EGFR) in a manner dependent on Casitas B-lineage lymphoma (CBL) (an E3 ubiquitin-protein ligase). MiR-22-3p predicted from four databases could target CBL to inhibit the expression of CBL, increase p-EGFR levels and neurites length via STAT3/GAP43 pathway rather than Erk1/2 axis. EGF, EGFR, and miR-22-3p were downregulated sharply after injury. In vivo miR-22-3p Agomir application could regulate CBL/p-EGFR/p-STAT3/GAP43/p-GAP43 axis, and restore spinal cord sensory conductive function. This study clarified the mechanism of the limited promotion effect of EGF on adult primary sensory neuron neurite and targeting miR-22-3p could be a novel strategy to treat sensory dysfunction after SCI.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/metabolismo , Proteína GAP-43/metabolismo , MicroRNAs/metabolismo , Regeneração Nervosa , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Receptoras Sensoriais/enzimologia , Traumatismos da Medula Espinal/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Potenciais Somatossensoriais Evocados , Feminino , MicroRNAs/genética , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal , Oligonucleotídeos/farmacologia , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-cbl/genética , Ratos Wistar , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
5.
Biochem Biophys Res Commun ; 516(3): 991-998, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31277941

RESUMO

Spinal cord injury (SCI) is terrible damage leading to the deficiencies and results in infinite inconvenience to sufferers. The effective treatment for SCI still meets a larger number of problems. Herein, the underlying molecular mechanism and novel therapy of SCI are urgently to investigate. Arachidonate 12-lipoxygenase (ALOX12) is widely expressed in various cell types and plays important role in modulating different cellular processes, such as platelet aggregation, cell migration and cancer cell proliferation. Nevertheless, the effects of ALOX12 on SCI are unclear. In the study, SCI model was established in wild type (WT) mice and ALOX12 knockout mice. First, ALOX12 expression was up-regulated in spinal cord tissues of WT mice after SCI. ALOX12-knockout mice exhibited improved behavior after SCI operation. Glial activation triggered by SCI was also alleviated in mice with the loss of ALOX12, as evidenced by the down-regulated expression of glial fibrillary acidic protein (GFAP) and Iba-1 in spinal cord samples. Further, SCI-induced inflammation was markedly prevented in ALOX12-knockout mice through blocking inhibitor of NF-κB α (IκBα)/nuclear factor-κB (NF-κB) pathway signaling. Additionally, reducing ALOX12 expression attenuated apoptosis in spinal cord tissues of SCI mice by decreasing Cyto-c, cleaved Caspase-3 and poly (ADP-ribose) polymerases (PARP) expression. The protective role of ALOX12-decrease against SCI was verified in LPS-incubated glial cells through repressing inflammatory response and apoptotic formation. Moreover, transgenic mice with ALOX12 over-expression showed accelerated SCI, associated with intensified inflammation and apoptosis. Based on these results, strategies for inhibiting ALOX12 could be used to prevent SCI development by repressing inflammation and apoptosis.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Regulação da Expressão Gênica , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/prevenção & controle , Medula Espinal/enzimologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Araquidonato 12-Lipoxigenase/deficiência , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Medula Espinal/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia
6.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt A): 2001-2014, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28435009

RESUMO

The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.


Assuntos
Animais Geneticamente Modificados , Lesões Encefálicas Traumáticas/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Viroses/tratamento farmacológico , Animais , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Humanos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Acidente Vascular Cerebral/enzimologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Viroses/enzimologia , Viroses/genética , Viroses/patologia
7.
J Neurosci ; 37(30): 7079-7095, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28626016

RESUMO

The mammalian target of rapamycin (mTOR) positively regulates axon growth in the mammalian central nervous system (CNS). Although axon regeneration and functional recovery from CNS injuries are typically limited, knockdown or deletion of PTEN, a negative regulator of mTOR, increases mTOR activity and induces robust axon growth and regeneration. It has been suggested that inhibition of S6 kinase 1 (S6K1, gene symbol: RPS6KB1), a prominent mTOR target, would blunt mTOR's positive effect on axon growth. In contrast to this expectation, we demonstrate that inhibition of S6K1 in CNS neurons promotes neurite outgrowth in vitro by twofold to threefold. Biochemical analysis revealed that an mTOR-dependent induction of PI3K signaling is involved in mediating this effect of S6K1 inhibition. Importantly, treating female mice in vivo with PF-4708671, a selective S6K1 inhibitor, stimulated corticospinal tract regeneration across a dorsal spinal hemisection between the cervical 5 and 6 cord segments (C5/C6), increasing axon counts for at least 3 mm beyond the injury site at 8 weeks after injury. Concomitantly, treatment with PF-4708671 produced significant locomotor recovery. Pharmacological targeting of S6K1 may therefore constitute an attractive strategy for promoting axon regeneration following CNS injury, especially given that S6K1 inhibitors are being assessed in clinical trials for nononcological indications.SIGNIFICANCE STATEMENT Despite mTOR's well-established function in promoting axon regeneration, the role of its downstream target, S6 kinase 1 (S6K1), has been unclear. We used cellular assays with primary neurons to demonstrate that S6K1 is a negative regulator of neurite outgrowth, and a spinal cord injury model to show that it is a viable pharmacological target for inducing axon regeneration. We provide mechanistic evidence that S6K1's negative feedback to PI3K signaling is involved in axon growth inhibition, and show that phosphorylation of S6K1 is a more appropriate regeneration indicator than is S6 phosphorylation.


Assuntos
Axônios/metabolismo , Imidazóis/administração & dosagem , Piperazinas/administração & dosagem , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/enzimologia , Regeneração da Medula Espinal/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Crescimento Neuronal/efeitos dos fármacos , Ligação Proteica , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Especificidade por Substrato , Resultado do Tratamento
8.
Neurochem Res ; 43(4): 848-856, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29404840

RESUMO

Spinal cord injury (SCI) is a type of long-term disability with a high morbidity rate in clinical settings for which there is no effective clinical treatment to date. Usually, lithium is used as a popular mood stabilizer. Recently, growing evidence has shown that lithium has clear neuroprotective effects after SCI, and the administration of lithium can effectively improve locomotor recovery. However, the exact neuroprotective mechanism of lithium is still not understood. Glycogen synthase kinase-3 beta (GSK3ß) is a serine/threonine kinase that plays an important role in the neuroprotective effects of lithium both in vivo and in vitro. In this study, we discovered that lithium inhibits GSK3ß activity through two different signaling pathways in spinal cord neurons. In the acute phase, lithium inhibited GSK3ß activity by stimulating phosphorylation of AKT; in the chronic phase, we first discovered that lithium additionally upregulated the expression of Na+, K+-ATPase α1 (NKA α1), which had an inhibitory effect on GSK3ß activity by inducing the expression of glucocorticoid inducible kinase 1 (SGK1). SGK1 is well known as a regulator of the GSK3ß/ß-catenin signaling pathway. Moreover, the suppressed activity of GSK3ß increased the level of ß-catenin in the cytoplasm, which gave rise to the translocation of the freely stabilized ß-catenin to the nucleus. In addition, the accumulation of ß-catenin in the nucleus had the benefits of neuronal survival. Hopefully our findings from this study are beneficial in revealing the neuroprotective mechanism of lithium and in offering novel targets for the development of new SCI therapeutic drugs.


Assuntos
Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/enzimologia
9.
Med Sci Monit ; 24: 4510-4515, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29959890

RESUMO

BACKGROUND The correlation between serum concentration of neuron specific enolase (NSE), S100B, and the prognosis of patients with acute spinal cord injury (ASCI) remains controversial. MATERIAL AND METHODS Sixty patients with confirmed diagnosis of ASCI were recruited for this study from February 2015 to January 2017. The serum level of NSE and S100B were dynamically measured: on the day of injury and for 2 weeks. The 60 cases were divided into Group A (1 or more than 1 ASIA grade improved at 6 months after the injury) and Group B (ASIA grades changed <1 at 6 months after the injury). The serum level of the 2 groups were compared at different time points. And the prognostic value of serum NSE and S100B as biomarkers in patients with ASCI were calculated by Bayes theorem. RESULTS The serum levels of NSE in Groups A and B on the 2nd day of injury reached a peak at 66.80±13.76 g/L and 98.87±20.12 µg/L, respectively, and then declined gradually. On the 14th day of injury, the serum levels of NSE in both groups were 21.23±8.45 and 39.32±16.31 µg/L, respectively, which were much lower than those on the 2nd day (P<0.05). The serum levels of S100B in Groups A and B rose after the injury and reached a peak on the 4th day of injury. Then, the levels declined gradually to 1.14±0.64 and 1.97±0.98 µg/L, respectively, 2 weeks after the injury. Serum levels of NSE and S100B were good biomarkers for predicting the prognosis of ASCI patients with the sensitivity of 74.35% and 71.79%, the specificity of 71.43% and 66.67%. The cutoff value for serum NSE and S100B were 29.07 µg/L and 1.67 µg/L respectively. The AUCs were 0.78 (95% CI: 0.66-0.89) and 0.76 (95% CI: 0.63-0.89) respectively for serum NSE and S100B. CONCLUSIONS Serum levels of NSE and S100B protein can reflect the degree of spinal cord injury and could be potential biomarkers for the prognosis of acute spinal cord injury.


Assuntos
Fosfopiruvato Hidratase/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Traumatismos da Medula Espinal/sangue , Doença Aguda , Adulto , Teorema de Bayes , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia
10.
J Neurosci ; 36(5): 1660-8, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843647

RESUMO

Little is known about intracellular signaling mechanisms that persistently excite neurons in pain pathways. Persistent spontaneous activity (SA) generated in the cell bodies of primary nociceptors within dorsal root ganglia (DRG) has been found to make major contributions to chronic pain in a rat model of spinal cord injury (SCI) (Bedi et al., 2010; Yang et al., 2014). The occurrence of SCI-induced SA in a large fraction of DRG neurons and the persistence of this SA long after dissociation of the neurons provide an opportunity to define intrinsic cell signaling mechanisms that chronically drive SA in pain pathways. The present study demonstrates that SCI-induced SA requires continuing activity of adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA), as well as a scaffolded complex containing AC5/6, A-kinase anchoring protein 150 (AKAP150), and PKA. SCI caused a small but significant increase in the expression of AKAP150 but not other AKAPs. DRG membranes isolated from SCI animals revealed a novel alteration in the regulation of AC. AC activity stimulated by Ca(2+)-calmodulin increased, while the inhibition of AC activity by Gαi showed an unexpected and dramatic decrease after SCI. Localized enhancement of the activity of AC within scaffolded complexes containing PKA is likely to contribute to chronic pathophysiological consequences of SCI, including pain, that are promoted by persistent hyperactivity in DRG neurons. SIGNIFICANCE STATEMENT: Chronic neuropathic pain is a major clinical problem with poorly understood mechanisms and inadequate treatments. Recent findings indicate that chronic pain in a rat SCI model depends upon hyperactivity in dorsal root ganglia (DRG) neurons. Although cAMP signaling is involved in many forms of neural plasticity, including hypersensitivity of nociceptors in the presence of inflammatory mediators, our finding that continuing cAMP-PKA signaling is required for persistent SA months after SCI and long after isolation of nociceptors is surprising. The dependence of ongoing SA upon AKAP150 and AC5/6 was unknown. The discovery of a dramatic decrease in Gαi inhibition of AC activity after SCI is novel for any physiological system and potentially has broad implications for understanding chronic pain mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Adenilil Ciclases/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Gânglios Espinais/enzimologia , Nociceptores/fisiologia , Traumatismos da Medula Espinal/enzimologia , Proteínas de Ancoragem à Quinase A/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Masculino , Ratos , Traumatismos da Medula Espinal/patologia , Alicerces Teciduais
11.
Mol Cell Biochem ; 431(1-2): 11-20, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28210902

RESUMO

Neuronal cell death following spinal cord injury (SCI) is an important contributor to neurological deficits. The purpose of our work was to delineate the function of mammalian sterile 20-like kinase 1 (Mst1), a pro-apoptotic kinase and key mediator of apoptotic signaling, in the pathogenesis of an experimental mouse model of SCI. Male mice received a mid-thoracic spinal contusion injury, and it was found that phosphorylation of Mst1 at the injured site was enhanced significantly following SCI. Furthermore, when compared to the wild-type controls, Mst1-deficient mice displayed improved locomotor function by increased Basso mouse scale score. Deletion of Mst1 in mice attenuated loss of motor neurons and suppressed microglial and glial activation following SCI. Deletion of Mst1 in mice reduced apoptosis via suppressing cytochrome c release and caspase-3 activation following SCI. Deletion of Mst1 attenuated mitochondrial dysfunction and increased ATP formation following SCI. Deletion of Mst1 in mice inhibited local inflammation following SCI, evidenced by reduced activities of myeloperoxidase and protein levels of TNF-α, IL-1ß, and IL-6. In conclusion, the present study demonstrated that deletion of Mst1 attenuated neuronal loss and improved locomotor function in a mouse model of SCI, via preserving mitochondrial function, attenuating mitochondria-mediated apoptotic pathway, and suppressing inflammation, at least in part.


Assuntos
Apoptose , Locomoção , Proteínas Serina-Treonina Quinases/deficiência , Traumatismos da Medula Espinal , Animais , Caspase 3/genética , Caspase 3/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Deleção de Genes , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
12.
Bull Exp Biol Med ; 162(3): 316-319, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28091928

RESUMO

Functional state of the neuromotor system after administration of a nonspecific NO synthase blocker L-NAME was studied on the model of experimental contusion of the spinal cord. Electron paramagnetic resonance measurements of NO production in the damaged segment of the spinal cord were performed for estimation of the dynamics of intensity of NO production during traumatic disease of the spinal cord and selection of optimal period for L-NAME administration. The status of the neuromotor system was evaluated by stimulation electromyography. Treatment with L-NAME during the acute period of traumatic injury to the spinal cord sharply reduced the intensity of evoked motor responses and more pronounced increase in excitability of peripheral motor structures. The results suggest that NO system is a factor of regulation of the stress-induced and adaptive responses of the body at the early stage of spinal cord injury.


Assuntos
Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/biossíntese , Traumatismos da Medula Espinal/enzimologia , Medula Espinal/enzimologia , Animais , Animais não Endogâmicos , Eletromiografia , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Masculino , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
13.
Med Sci Monit ; 22: 1472-9, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27135658

RESUMO

BACKGROUND We investigated whether an intrathecal transplantation of mesenchymal stem cells (MSCs) activates extracellular adjusting protein kinase1 and 2(ERK1/2) in the spinal cords of rats following an ischemia-reperfusion injury, resulting in improved spinal cord function and inhibition of apoptosis. MATERIAL AND METHODS We observed the relationship between the activation of ERK1/2 in the rat spinal cord and intrathecal transplantation of MSCs, as well as the effect of U0126, a MEK1/2 (upstream protein of ERK1/2) inhibitor, on a spinal cord ischemia-reperfusion injury model in rats using Basso Beattie Bresnahan (BBB) scoring, somatosensory evoked potentials (SSEPs), immunohistochemistry, and Western blot analysis. RESULTS After transplantation of MSCs, the lower limb motor function score increased, and the incubation period of SSEPs and amplitude were improved. Moreover, following transplantation of MSCs, Bcl2 expression increased, whereas Bax expression decreased after reperfusion. Transplantation of MSCs significantly enhanced pERK1/2 expression in the spinal cord, as well as pERK1/2 in immunoreactive cells located in the grey matter of the L4/5 levels of the spinal cord, following ischemia reperfusion injury in rats. The effective dose of U0126 required to inhibit pERK1/2 expression was 200 µg/kg. Bcl-2 decreased and the level of Bax expression increased in the spinal cord after ischemia reperfusion injury, and the protective effects of MSCs were attenuated. CONCLUSIONS Our findings suggest that intrathecal transplantation of MSCs activates ERK1/2 in the spinal cord following ischemia reperfusion injury, partially improves spinal cord function, and inhibits apoptosis in rats.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neurônios/patologia , Traumatismo por Reperfusão/terapia , Traumatismos da Medula Espinal/terapia , Medula Espinal/enzimologia , Medula Espinal/fisiopatologia , Animais , Apoptose , Contagem de Células , Células Cultivadas , Ativação Enzimática , Potenciais Somatossensoriais Evocados , Extremidades/fisiopatologia , Citometria de Fluxo , Humanos , Injeções Espinhais , Masculino , Atividade Motora , Fosforilação , Ratos Sprague-Dawley , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/fisiopatologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/fisiopatologia
14.
Spinal Cord ; 54(12): 1139-1144, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27377302

RESUMO

Study designExperimental study.ObjectiveTo determine the effects of electroacupuncture (EA) at Zusanli (ST36) on colonic motility and neuronal nitric oxide synthase (nNOS) expression in rats with neurogenic bowel dysfunction (NBD) after spinal cord injury (SCI).SettingSecond School of Clinical Medical, Nanjing University of Chinese Medicine, Jiangsu, China.MethodsWe divided 30 adult Sprague-Dawley rats into a sham group (10 rats), a model group (SCI alone, 10 rats) and a EA group (SCI+EA at ST36, 10 rats). Defecation time was recorded as the time from activated carbon administration (on day 15) to evacuation of the first black stool. Immunohistochemical, real-time PCR and western blot analyses were performed to assess changes in nNOS-immunoreactive cells, and nNOS messenger RNA (mRNA) and protein, respectively, after 14 experimental days.ResultsDefecation time was lower in the EA group than in the model group (P<0.01). On immunohistochemical analysis, nNOS was localized in the myenteric plexus of the colon. The number of nNOS-immunoreactive cells and the intensity of nNOS staining were greater in the model group than in the sham group and lesser in the EA group than in the model group. Consistent with the immunohistochemical findings, nNOS mRNA and protein expression was higher in the model group than in the sham group and lower in the EA group than in the model group (P<0.05 for both).ConclusionIncreased colonic nNOS expression can induce/aggravate NBD in SCI rats. EA at ST36 ameliorated NBD, possibly by downregulating colonic nNOS expression.


Assuntos
Colo/enzimologia , Eletroacupuntura/métodos , Intestino Neurogênico/etiologia , Intestino Neurogênico/terapia , Óxido Nítrico Sintase Tipo I/metabolismo , Traumatismos da Medula Espinal/complicações , Pontos de Acupuntura , Animais , Western Blotting , Colo/patologia , Defecação/fisiologia , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Masculino , Plexo Mientérico/enzimologia , Plexo Mientérico/patologia , Intestino Neurogênico/enzimologia , Intestino Neurogênico/patologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Fatores de Tempo
15.
Mol Pain ; 11: 35, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26093674

RESUMO

BACKGROUND: Neuropathic pain and sensory abnormalities are a debilitating secondary consequence of spinal cord injury (SCI). Maladaptive structural plasticity is gaining recognition for its role in contributing to the development of post SCI pain syndromes. We previously demonstrated that excitotoxic induced SCI dysesthesias are associated with enhanced dorsal root ganglia (DRG) neuronal outgrowth. Although glycogen synthase kinase-3ß (GSK-3ß) is a known intracellular regulator neuronal growth, the potential contribution to primary afferent growth responses following SCI are undefined. We hypothesized that SCI triggers inhibition of GSK-3ß signaling resulting in enhanced DRG growth responses, and that PI3K mediated activation of GSK-3ß can prevent this growth and the development of at-level pain syndromes. RESULTS: Excitotoxic SCI using intraspinal quisqualic acid (QUIS) resulted in inhibition of GSK-3ß in the superficial spinal cord dorsal horn and adjacent DRG. Double immunofluorescent staining showed that GSK-3ß(P) was expressed in DRG neurons, especially small nociceptive, CGRP and IB4-positive neurons. Intrathecal administration of a potent PI3-kinase inhibitor (LY294002), a known GSK-3ß activator, significantly decreased GSK-3ß(P) expression levels in the dorsal horn. QUIS injection resulted in early (3 days) and sustained (14 days) DRG neurite outgrowth of small and subsequently large fibers that was reduced with short term (3 days) administration of LY294002. Furthermore, LY294002 treatment initiated on the date of injury, prevented the development of overgrooming, a spontaneous at-level pain related dysesthesia. CONCLUSIONS: QUIS induced SCI resulted in inhibition of GSK-3ß in primary afferents and enhanced at-level DRG intrinsic growth (neurite elongation and initiation). Early PI3K mediated activation of GSK-3ß attenuated QUIS-induced DRG neurite outgrowth and prevented the development of at-level dysesthesias.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios Aferentes/enzimologia , Neurônios Aferentes/patologia , Neurotoxinas/toxicidade , Parestesia/complicações , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Cromonas/administração & dosagem , Cromonas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Gânglios Espinais/patologia , Glicogênio Sintase Quinase 3 beta , Injeções Espinhais , Masculino , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Neuritos/efeitos dos fármacos , Neuritos/patologia , Neurônios Aferentes/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Parestesia/enzimologia , Parestesia/patologia , Inibidores de Proteínas Quinases/farmacologia , Ácido Quisquálico , Ratos Long-Evans , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/enzimologia , Corno Dorsal da Medula Espinal/patologia , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/patologia
16.
Ann Neurol ; 75(5): 644-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623140

RESUMO

OBJECTIVE: The objective of this study was to investigate whether cytosolic phospholipase A2 (cPLA2 ), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of spinal cord injury (SCI). METHODS: A combination of molecular, histological, immunohistochemical, and behavioral assessments were used to test whether blocking cPLA2 activation pharmacologically or genetically reduced cell death, protected spinal cord tissue, and improved behavioral recovery after a contusive SCI performed at the 10th thoracic level in adult mice. RESULTS: SCI significantly increased cPLA2 expression and activation. Activated cPLA2 was localized mainly in neurons and oligodendrocytes. Notably, the SCI-induced cPLA2 activation was mediated by the extracellular signal-regulated kinase signaling pathway. In vitro, activation of cPLA2 by ceramide-1-phosphate or A23187 induced spinal neuronal death, which was substantially reversed by arachidonyl trifluoromethyl ketone, a cPLA2 inhibitor. Remarkably, blocking cPLA2 pharmacologically at 30 minutes postinjury or genetically deleting cPLA2 in mice ameliorated motor deficits, and reduced cell loss and tissue damage after SCI. INTERPRETATION: cPLA2 may play a key role in the pathogenesis of SCI, at least in the C57BL/6 mouse, and as such could be an attractive therapeutic target for ameliorating secondary tissue damage and promoting recovery of function after SCI.


Assuntos
Marcação de Genes/métodos , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/genética , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/genética , Animais , Butadienos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Ativação Enzimática/genética , Inibidores Enzimáticos/administração & dosagem , Feminino , Regulação Enzimológica da Expressão Gênica , Fosfolipases A2 do Grupo IV/deficiência , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nitrilas/administração & dosagem , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Medula Espinal/enzimologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia
17.
Neurochem Res ; 40(6): 1243-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25931161

RESUMO

Spinal cord injury (SCI) is a condition producing irreversible damage to the neurological function. Among the leading mechanisms associated to cell death after SCI, excitotoxicity, oxidative stress, inflammatory response and apoptosis are considered potential targets to prevent tissue damage. We recently reported that dapsone an anti-inflammatory drug, decreases the activity of myeloperoxidase, lipid peroxidation, improve neurological function and increase the amount of spared tissue after SCI in rats. In this study, we characterized the anti-apoptotic effect of dapsone administered at 12.5 mg/kg/24 h dose, starting at 3 and 5 h after SCI. We monitored the activity of caspases-8, 9, and 3 and quantitated Annexin V and TUNEL positive cells in the core of the lesion. Results showed increased activities of caspase-8, 9 and 3 at 72 h by SCI to reach increments of 69, 143 and 293 %, respectively, as compared to sham group. Meanwhile, dapsone, administered at 3 and 5 after SCI, reduced caspase-8 activity by 36 and 44 % respectively, whereas the activity of caspase-9 was diminished by 37 %. Likewise, the activity of caspase-3 showed a decrease of 38 %. Finally, both Annexin V and TUNEL-positive cells were significantly reduced by DDS as compared to untreated SCI animals. Results showed that dapsone exerted anti-apoptotic effect after SCI.


Assuntos
Apoptose/efeitos dos fármacos , Dapsona/farmacologia , Dapsona/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Animais , Caspases/metabolismo , Feminino , Marcação In Situ das Extremidades Cortadas , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/enzimologia
18.
Spinal Cord ; 53(6): 432-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25644387

RESUMO

STUDY DESIGN: Experimental study. OBJECTIVES: To investigate a modified compression model of spinal cord injury (SCI) in adult rats by using a room-air- inflated Fogarty balloon catheter. SETTING: Kaohsiung, Taiwan. METHODS: The rats were divided into injury, sham-operated and control groups. A 2-French Fogarty catheter was passed from the lumbar spine (L3-L4) epidurally, with a mini-laminectomy under the microscope, to the level of thoracic spine (T6-T7). The actual site of the catheter tip was confirmed with X-ray. The balloon of Fogarty catheter then was inflated with room air, 0.2 ml, for 10 min. Mini-laminectomy was performed without inserting the catheter in the sham-operated group. Quantitative neurological outcomes were evaluated with the Basso, Beattie and Bresnahan (BBB) locomotor rating scale daily. The gene expression of nitric oxide synthases (NOSs) of the spinal cord was investigated at the end of the functional assessment. RESULTS: The mean BBB locomotor scores were 10±1.85 and 10±1.85, respectively, on days 1 and 3 in the injury group, and 21 and 20.29±0.69, respectively, in the sham-operated group. There was a significantly increased gene expression of inducible NOS in the SCI group compared with the sham-operated group and control group. Endothelial NOS gene expression was not significantly different among the groups. CONCLUSION: The functional and molecular assessments show that this modified balloon-compression technique is a reproducible, simple and inexpensive model of SCI in rats.


Assuntos
Modelos Animais de Doenças , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Traumatismos da Medula Espinal/enzimologia , Medula Espinal/enzimologia , Animais , Catéteres , Expressão Gênica , Laminectomia , Locomoção/fisiologia , Vértebras Lombares , Masculino , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Índice de Gravidade de Doença
19.
Neural Plast ; 2015: 549671, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504602

RESUMO

Neuromodulators, such as serotonin (5-hydroxytryptamine, 5-HT) and noradrenalin, play an essential role in regulating the motor and sensory functions in the spinal cord. We have previously shown that in the rat spinal cord the activity of aromatic L-amino acid decarboxylase (AADC) cells to produce 5-HT from its precursor (5-hydroxytryptophan, 5-HTP) is dramatically increased following complete spinal cord transection. In this study, we investigated whether a partial loss of 5-HT innervation could similarly increase AADC activity. Adult rats with spinal cord hemisected at thoracic level (T11/T12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Serotonina/biossíntese , Traumatismos da Medula Espinal/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Carbidopa/farmacologia , Doença Crônica , Membro Posterior/fisiopatologia , Masculino , Fibras Nervosas/metabolismo , Plasticidade Neuronal , Neurônios/enzimologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/enzimologia , Traumatismos da Medula Espinal/fisiopatologia , Cauda/fisiopatologia , Vértebras Torácicas
20.
Zhonghua Wai Ke Za Zhi ; 53(9): 718-20, 2015 Sep 01.
Artigo em Zh | MEDLINE | ID: mdl-26654153

RESUMO

Chronic spinal cord compression is the common clinical prognosis with various outcomes, but the affecting factors and mechanisms still remain unexplored. The structure and function of neurovascular unit manifest great significance in the central nervous system diseases. This paper discusses matrix metalloproteinase (MMP) impact on the stability of the neural vascular unit, by directly decomposing extracellular matrix, inducing the glial cell migration, activating angiogenesis, regulating function of blood spinal cord barrier, and put forward the MMP may be the key points in regulation of spinal cord neurovascular unit structure and function change to affect the outcome of chronic oppressive cervical spinal cord.


Assuntos
Metaloproteinases da Matriz/fisiologia , Síndromes de Compressão Nervosa/enzimologia , Traumatismos da Medula Espinal/enzimologia , Movimento Celular , Humanos , Síndromes de Compressão Nervosa/diagnóstico , Neurônios/citologia , Prognóstico , Traumatismos da Medula Espinal/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA