Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 616(7957): 495-503, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046085

RESUMEN

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Asunto(s)
Aletas de Animales , Evolución Biológica , Genoma , Genómica , Rajidae , Animales , Aletas de Animales/anatomía & histología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Rajidae/anatomía & histología , Rajidae/genética , Pez Cebra/genética , Genes Reporteros/genética
2.
Proc Natl Acad Sci U S A ; 119(11): e2114802119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263228

RESUMEN

SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Anfioxos , Pez Cebra , Animales , Evolución Biológica , Gastrulación/genética , Anfioxos/embriología , Anfioxos/genética , Pez Cebra/embriología , Pez Cebra/genética
3.
Nature ; 564(7734): 64-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464347

RESUMEN

Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.


Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genética
4.
Mol Biol Evol ; 37(10): 2857-2864, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421818

RESUMEN

We investigated how the two rounds of whole-genome duplication that occurred at the base of the vertebrate lineage have impacted ancient microsyntenic associations involving developmental regulators (known as genomic regulatory blocks, GRBs). We showed that the majority of GRBs identified in the last common ancestor of chordates have been maintained as a single copy in humans. We found evidence that dismantling of the duplicated GRB copies occurred early in vertebrate evolution often through the differential retention of the regulatory gene but loss of the bystander gene's exonic sequences. Despite the large evolutionary scale, the presence of duplicated highly conserved noncoding regions provided unambiguous proof for this scenario for multiple ancient GRBs. Remarkably, the dismantling of ancient GRB duplicates has contributed to the creation of large gene deserts associated with regulatory genes in vertebrates, providing a potentially widespread mechanism for the origin of these enigmatic genomic traits.


Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores , Poliploidía , Vertebrados/genética , Animales , Duplicación Cromosómica , Genoma Humano , Humanos , Elementos Reguladores de la Transcripción
5.
Nature ; 507(7492): 371-5, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24646999

RESUMEN

Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.


Asunto(s)
Proteínas de Homeodominio/genética , Intrones/genética , Oxigenasas de Función Mixta/genética , Obesidad/genética , Oxo-Ácido-Liasas/genética , Proteínas/genética , Factores de Transcripción/genética , Tejido Adiposo/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Metabolismo Basal/genética , Índice de Masa Corporal , Peso Corporal/genética , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/genética , Dieta , Genes Dominantes/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Delgadez/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
6.
PLoS Comput Biol ; 14(3): e1006030, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522512

RESUMEN

The use of 3C-based methods has revealed the importance of the 3D organization of the chromatin for key aspects of genome biology. However, the different caveats of the variants of 3C techniques have limited their scope and the range of scientific fields that could benefit from these approaches. To address these limitations, we present 4Cin, a method to generate 3D models and derive virtual Hi-C (vHi-C) heat maps of genomic loci based on 4C-seq or any kind of 4C-seq-like data, such as those derived from NG Capture-C. 3D genome organization is determined by integrative consideration of the spatial distances derived from as few as four 4C-seq experiments. The 3D models obtained from 4C-seq data, together with their associated vHi-C maps, allow the inference of all chromosomal contacts within a given genomic region, facilitating the identification of Topological Associating Domains (TAD) boundaries. Thus, 4Cin offers a much cheaper, accessible and versatile alternative to other available techniques while providing a comprehensive 3D topological profiling. By studying TAD modifications in genomic structural variants associated to disease phenotypes and performing cross-species evolutionary comparisons of 3D chromatin structures in a quantitative manner, we demonstrate the broad potential and novel range of applications of our method.


Asunto(s)
Mapeo Cromosómico/métodos , Biología Computacional/métodos , Imagenología Tridimensional/métodos , Cromatina/fisiología , Cromosomas , Simulación por Computador , Genoma , Genómica/métodos , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN/métodos , Programas Informáticos
7.
Proc Natl Acad Sci U S A ; 112(24): 7542-7, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26034287

RESUMEN

Increasing evidence in the last years indicates that the vast amount of regulatory information contained in mammalian genomes is organized in precise 3D chromatin structures. However, the impact of this spatial chromatin organization on gene expression and its degree of evolutionary conservation is still poorly understood. The Six homeobox genes are essential developmental regulators organized in gene clusters conserved during evolution. Here, we reveal that the Six clusters share a deeply evolutionarily conserved 3D chromatin organization that predates the Cambrian explosion. This chromatin architecture generates two largely independent regulatory landscapes (RLs) contained in two adjacent topological associating domains (TADs). By disrupting the conserved TAD border in one of the zebrafish Six clusters, we demonstrate that this border is critical for preventing competition between promoters and enhancers located in separated RLs, thereby generating different expression patterns in genes located in close genomic proximity. Moreover, evolutionary comparison of Six-associated TAD borders reveals the presence of CCCTC-binding factor (CTCF) sites with diverging orientations in all studied deuterostomes. Genome-wide examination of mammalian HiC data reveals that this conserved CTCF configuration is a general signature of TAD borders, underscoring that common organizational principles underlie TAD compartmentalization in deuterostome evolution.


Asunto(s)
Evolución Molecular , Proteínas Represoras/química , Proteínas Represoras/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , ADN/genética , Elementos de Facilitación Genéticos , Genes Homeobox , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Modelos Genéticos , Familia de Multigenes , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/metabolismo , Strongylocentrotus purpuratus/genética , Pez Cebra/genética
8.
Curr Opin Genet Dev ; 78: 102019, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603519

RESUMEN

Most animal genomes fold in 3D chromatin domains called topologically associated domains (TADs) that facilitate interactions between cis-regulatory elements (CREs) and promoters. Owing to their critical role in the control of developmental gene expression, we explore how TADs have shaped animal evolution. In the light of recent studies that profile TADs in disparate animal lineages, we discuss their phylogenetic distribution and the mechanisms that underlie their formation. We present evidence indicating that TADs are plastic entities composed of genomic strata of different ages: ancient cores are combined with newer regions and brought into extant TADs through genomic rearrangements. We highlight that newly incorporated TAD strata enable the establishment of new CRE-promoter interactions and in turn new expression patterns that can drive phenotypical innovation. We further highlight how subtle changes in chromatin folding may fine-tune the expression levels of developmental genes and hold a potential for evolutionary significance.


Asunto(s)
Cromatina , Genoma , Animales , Filogenia , Cromatina/genética , Ensamble y Desensamble de Cromatina , Genómica
9.
Nat Genet ; 54(7): 1026-1036, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817979

RESUMEN

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.


Asunto(s)
Cromatina , Estudio de Asociación del Genoma Completo , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Genoma/genética , Ratones
10.
Front Immunol ; 13: 901747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769482

RESUMEN

The Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.


Asunto(s)
Cromatina , Elementos de Facilitación Genéticos , Cromatina/genética , Activación de Complemento , Regulación de la Expresión Génica , Familia de Multigenes
11.
Genome Biol ; 23(1): 243, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401278

RESUMEN

BACKGROUND: Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS: We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS: In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.


Asunto(s)
Anfioxos , Animales , Anfioxos/genética , Duplicación de Gen , Filogenia , Vertebrados/genética , Vertebrados/metabolismo , Evolución Molecular
12.
Nat Commun ; 13(1): 1945, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410466

RESUMEN

The pancreas is a central organ for human diseases. Most alleles uncovered by genome-wide association studies of pancreatic dysfunction traits overlap with non-coding sequences of DNA. Many contain epigenetic marks of cis-regulatory elements active in pancreatic cells, suggesting that alterations in these sequences contribute to pancreatic diseases. Animal models greatly help to understand the role of non-coding alterations in disease. However, interspecies identification of equivalent cis-regulatory elements faces fundamental challenges, including lack of sequence conservation. Here we combine epigenetic assays with reporter assays in zebrafish and human pancreatic cells to identify interspecies functionally equivalent cis-regulatory elements, regardless of sequence conservation. Among other potential disease-relevant enhancers, we identify a zebrafish ptf1a distal-enhancer whose deletion causes pancreatic agenesis, a phenotype previously found to be induced by mutations in a distal-enhancer of PTF1A in humans, further supporting the causality of this condition in vivo. This approach helps to uncover interspecies functionally equivalent cis-regulatory elements and their potential role in human disease.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Estudio de Asociación del Genoma Completo , Páncreas , Pez Cebra/genética
13.
Sci Adv ; 8(28): eabo3583, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857513

RESUMEN

Pluripotent cells are a transient population of the mammalian embryo dependent on transcription factors, such as OCT4 and NANOG, which maintain pluripotency while suppressing lineage specification. However, these factors are also expressed during early phases of differentiation, and their role in the transition from pluripotency to lineage specification is largely unknown. We found that pluripotency factors play a dual role in regulating key lineage specifiers, initially repressing their expression and later being required for their proper activation. We show that Oct4 is necessary for activation of HoxB genes during differentiation of embryonic stem cells and in the embryo. In addition, we show that the HoxB cluster is coordinately regulated by OCT4 binding sites located at the 3' end of the cluster. Our results show that core pluripotency factors are not limited to maintaining the precommitted epiblast but are also necessary for the proper deployment of subsequent developmental programs.

14.
Cell Rep ; 39(12): 110988, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732123

RESUMEN

MacroH2A histone variants have a function in gene regulation that is poorly understood at the molecular level. We report that macroH2A1.2 and macroH2A2 modulate the transcriptional ground state of cancer cells and how they respond to inflammatory cytokines. Removal of macroH2A1.2 and macroH2A2 in hepatoblastoma cells affects the contact frequency of promoters and distal enhancers coinciding with changes in enhancer activity or preceding them in response to the cytokine tumor necrosis factor alpha. Although macroH2As regulate genes in both directions, they globally facilitate the nuclear factor κB (NF-κB)-mediated response. In contrast, macroH2As suppress the response to the pro-inflammatory cytokine interferon gamma. MacroH2A2 has a stronger contribution to gene repression than macroH2A1.2. Taken together, our results suggest that macroH2As have a role in regulating the response of cancer cells to inflammatory signals on the level of chromatin structure. This is likely relevant for the interaction of cancer cells with immune cells of their microenvironment.


Asunto(s)
Citocinas , Regulación de la Expresión Génica , FN-kappa B , Regiones Promotoras Genéticas/genética
15.
Nat Genet ; 54(7): 1037-1050, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789323

RESUMEN

Zebrafish, a popular organism for studying embryonic development and for modeling human diseases, has so far lacked a systematic functional annotation program akin to those in other animal models. To address this, we formed the international DANIO-CODE consortium and created a central repository to store and process zebrafish developmental functional genomic data. Our data coordination center ( https://danio-code.zfin.org ) combines a total of 1,802 sets of unpublished and re-analyzed published genomic data, which we used to improve existing annotations and show its utility in experimental design. We identified over 140,000 cis-regulatory elements throughout development, including classes with distinct features dependent on their activity in time and space. We delineated the distinct distance topology and chromatin features between regulatory elements active during zygotic genome activation and those active during organogenesis. Finally, we matched regulatory elements and epigenomic landscapes between zebrafish and mouse and predicted functional relationships between them beyond sequence similarity, thus extending the utility of zebrafish developmental genomics to mammals.


Asunto(s)
Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Genoma , Genómica , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Pez Cebra , Pez Cebra , Animales , Cromatina/genética , Genoma/genética , Humanos , Ratones , Anotación de Secuencia Molecular , Organogénesis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Nat Commun ; 12(1): 5415, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518536

RESUMEN

Coordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.


Asunto(s)
Factor de Unión a CCCTC/genética , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Factor de Unión a CCCTC/deficiencia , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Embrión no Mamífero/embriología , Elementos de Facilitación Genéticos/genética , Organogénesis/genética , Regiones Promotoras Genéticas/genética , RNA-Seq/métodos , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia
17.
Cell Stem Cell ; 24(5): 679-681, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051129

RESUMEN

In this issue of Cell Stem Cell, Laugsch et al. (2019) use direct reprogramming, epigenetics, and chromatin architecture studies to demonstrate that developmental defects observed in a BOFS patient are caused by reduced expression of TFAP2A in neural crest cells due to the spatial separation of the promoter from its neural crest enhancers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Cresta Neural , Cromatina , Epigénesis Genética , Humanos , Factor de Transcripción AP-2
18.
Nat Commun ; 10(1): 3049, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296872

RESUMEN

The transcription factor p63 is a master regulator of ectoderm development. Although previous studies show that p63 triggers epidermal differentiation in vitro, the roles of p63 in developing embryos remain poorly understood. Here, we use zebrafish embryos to analyze in vivo how p63 regulates gene expression during development. We generate tp63-knock-out mutants that recapitulate human phenotypes and show down-regulated epidermal gene expression. Following p63-binding dynamics, we find two distinct functions clearly separated in space and time. During early development, p63 binds enhancers associated to neural genes, limiting Sox3 binding and reducing neural gene expression. Indeed, we show that p63 and Sox3 are co-expressed in the neural plate border. On the other hand, p63 acts as a pioneer factor by binding non-accessible chromatin at epidermal enhancers, promoting their opening and epidermal gene expression in later developmental stages. Therefore, our results suggest that p63 regulates cell fate decisions during vertebrate ectoderm specification.


Asunto(s)
Ectodermo/embriología , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Placa Neural/embriología , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Cromatina/metabolismo , Regulación hacia Abajo , Ectodermo/metabolismo , Embrión no Mamífero , Elementos de Facilitación Genéticos/genética , Epidermis/embriología , Epidermis/metabolismo , Técnicas de Inactivación de Genes , Modelos Animales , Placa Neural/metabolismo , Fosfoproteínas/genética , Unión Proteica/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transactivadores/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
19.
Sci Rep ; 8(1): 5340, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593289

RESUMEN

Most bacteria form organized sessile communities, known as biofilms. Their ubiquity and relevance have stimulated the development of efficient mathematical models able to predict biofilm evolution and characteristics at different conditions. Here we present a study of the early stages of bacterial biofilm formation modeled by means of individual cell-based computer simulation. Simulation showed that clusters with different degrees of internal and orientational order were formed as a function of the aspect ratio of the individual particles and the relation between the diffusion and growth rates. Analysis of microscope images of early biofilm formation by the Gram-negative bacterium Pseudomonas putida at varying diffusion rates revealed a good qualitative agreement with the simulation results. Our model is a good predictor of microcolony morphology during early biofilm development, showing that the competition between diffusion and growth rates is a key aspect in the formation of stable biofilm microcolonies.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Simulación por Computador , Modelos Biológicos , Algoritmos
20.
PLoS One ; 13(3): e0193614, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29518122

RESUMEN

Previous reports have proposed that personality may have played a role on human Out-Of-Africa migration, pinpointing some genetic variants that were positively selected in the migrating populations. In this work, we discuss the role of a common copy-number variant within the SIRPB1 gene, recently associated with impulsive behavior, in the human Out-Of-Africa migration. With the analysis of the variant distribution across forty-two different populations, we found that the SIRPB1 haplotype containing duplicated allele significantly correlated with human migratory distance, being one of the few examples of positively selected loci found across the human world colonization. Circular Chromosome Conformation Capture (4C-seq) experiments from the SIRPB1 promoter revealed important 3D modifications in the locus depending on the presence or absence of the duplication variant. In addition, a 3' enhancer showed neural activity in transgenic models, suggesting that the presence of the CNV may compromise the expression of SIRPB1 in the central nervous system, paving the way to construct a molecular explanation of the SIRPB1 variants role in human migration.


Asunto(s)
Variaciones en el Número de Copia de ADN , Flujo Genético , Migración Humana , Receptores de Superficie Celular/genética , África , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Expresión Génica , Frecuencia de los Genes , Estudios de Asociación Genética , Haplotipos , Humanos , Regiones Promotoras Genéticas , Grupos Raciales/genética , Receptores de Superficie Celular/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA