Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 127: 102781, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952359

RESUMEN

To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes. By determining an SLE risk allele effect on gene expression (expression quantitative trait loci, eQTL) in LCLs and 16 other immune cell types, we identified 79 SLE risk locus:gene pairs putatively interacting with EBV infection. A total of 10 SLE risk genes from this list (CD40, LYST, JAZF1, IRF5, BLK, IKZF2, IL12RB2, FAM167A, PTPRC and SLC15A) were targeted by the EBV transcription factor, EBNA2, differentially expressed between LCLs and B cells, and the majority were also associated with EBV DNA copy number, and expression level of EBV encoded genes. Our final gene network model based on these genes is suggestive of a nexus involving SLE risk loci and EBV latency III and B cell proliferation signalling pathways. Collectively, our findings provide further evidence to support the interaction between SLE risk loci and EBV infection that is in part mediated by EBNA2. This interplay may increase the tendency towards EBV lytic switching dependent on the presence of SLE risk alleles. These results support further investigation into targeting EBV as a therapeutic strategy for SLE.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Lupus Eritematoso Sistémico , Linfocitos B , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Transcriptoma
2.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36430895

RESUMEN

Here we developed KARAJ, a fast and flexible Linux command-line tool to automate the end-to-end process of querying and downloading a wide range of genomic and transcriptomic sequence data types. The input to KARAJ is a list of PMCIDs or publication URLs or various types of accession numbers to automate four tasks as follows; firstly, it provides a summary list of accessible datasets generated by or used in these scientific articles, enabling users to select appropriate datasets; secondly, KARAJ calculates the size of files that users want to download and confirms the availability of adequate space on the local disk; thirdly, it generates a metadata table containing sample information and the experimental design of the corresponding study; and lastly, it enables users to download supplementary data tables attached to publications. Further, KARAJ provides a parallel downloading framework powered by Aspera connect which reduces the downloading time significantly.


Asunto(s)
Programas Informáticos , Transcriptoma , Genoma , Genómica , Metadatos
3.
Hum Mol Genet ; 28(2): 269-278, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30285234

RESUMEN

Epidemiological, molecular and genetic studies have indicated that high serum vitamin D levels are associated with lower risk of several autoimmune diseases. The vitamin D receptor (VDR) binding sites in monocytes and dendritic cells (DCs) are more common in risk genes for diseases with latitude dependence than in risk genes for other diseases. The transcription factor genes Zinc finger MIZ domain-containing protein 1 (ZMIZ1) and interferon regulatory factor 8 (IRF8)-risk genes for many of these diseases-have VDR binding peaks co-incident with the risk single nucleotide polymorphisms (SNPs). We show these genes are responsive to vitamin D: ZMIZ1 expression increased and IRF8 expression decreased, and this response was affected by genotype in different cell subsets. The IL10/IL12 ratio in tolerogenic DCs increased with vitamin D. These data indicate that vitamin D regulation of ZMIZ1 and IRF8 in DCs and monocytes contribute to latitude-dependent autoimmune disease risk.


Asunto(s)
Enfermedades Autoinmunes/genética , Diferenciación Celular/genética , Factores Reguladores del Interferón/genética , Monocitos/citología , Factores de Transcripción/genética , Vitamina D/farmacología , Vitaminas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/citología , Geografía Médica , Humanos
4.
Biochem Soc Trans ; 49(4): 1621-1631, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282824

RESUMEN

Neurodevelopmental and neurodegenerative disorders (NNDs) are a group of conditions with a broad range of core and co-morbidities, associated with dysfunction of the central nervous system. Improvements in high throughput sequencing have led to the detection of putative risk genetic loci for NNDs, however, quantitative neurogenetic approaches need to be further developed in order to establish causality and underlying molecular genetic mechanisms of pathogenesis. Here, we discuss an approach for prioritizing the contribution of genetic risk loci to complex-NND pathogenesis by estimating the possible impacts of these loci on gene regulation. Furthermore, we highlight the use of a tissue-specificity gene expression index and the application of artificial intelligence (AI) to improve the interpretation of the role of genetic risk elements in NND pathogenesis. Given that NND symptoms are associated with brain dysfunction, risk loci with direct, causative actions would comprise genes with essential functions in neural cells that are highly expressed in the brain. Indeed, NND risk genes implicated in brain dysfunction are disproportionately enriched in the brain compared with other tissues, which we refer to as brain-specific expressed genes. In addition, the tissue-specificity gene expression index can be used as a handle to identify non-brain contexts that are involved in NND pathogenesis. Lastly, we discuss how using an AI approach provides the opportunity to integrate the biological impacts of risk loci to identify those putative combinations of causative relationships through which genetic factors contribute to NND pathogenesis.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Neurodegenerativas/genética , Mapeo Cromosómico , Expresión Génica , Humanos
5.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805769

RESUMEN

Although the causes of Multiple Sclerosis (MS) still remain largely unknown, multiple lines of evidence suggest that Epstein-Barr virus (EBV) infection may contribute to the development of MS. Here, we aimed to identify the potential contribution of EBV-encoded and host cellular miRNAs to MS pathogenesis. We identified differentially expressed host miRNAs in EBV infected B cells (LCLs) and putative host/EBV miRNA interactions with MS risk loci. We estimated the genotype effect of MS risk loci on the identified putative miRNA:mRNA interactions in silico. We found that the protective allele of MS risk SNP rs4808760 reduces the expression of hsa-mir-3188-3p. In addition, our analysis suggests that hsa-let-7b-5p may interact with ZC3HAV1 differently in LCLs compared to B cells. In vitro assays indicated that the protective allele of MS risk SNP rs10271373 increases ZC3HAV1 expression in LCLs, but not in B cells. The higher expression for the protective allele in LCLs is consistent with increased IFN response via ZC3HAV1 and so decreased immune evasion by EBV. Taken together, this provides evidence that EBV infection dysregulates the B cell miRNA machinery, including MS risk miRNAs, which may contribute to MS pathogenesis via interaction with MS risk genes either directly or indirectly.


Asunto(s)
Linfocitos B/virología , Sitios Genéticos , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Alelos , Linfocitos B/inmunología , Secuencia de Bases , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , MicroARNs/inmunología , Modelos Biológicos , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Esclerosis Múltiple/virología , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , ARN Mensajero/inmunología , Proteínas de Unión al ARN/inmunología , Transducción de Señal
6.
Genes Immun ; 21(2): 91-99, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31619767

RESUMEN

Epstein-Barr Virus (EBV) infection appears to be necessary for the development of Multiple Sclerosis (MS), although the specific mechanisms are unknown. More than 200 single-nucleotide polymorphisms (SNPs) are known to be associated with the risk of developing MS. About a quarter of these are also highly associated with proximal gene expression in B cells infected with EBV (lymphoblastoid cell lines-LCLs). The DNA of LCLs is hypomethylated compared with both uninfected and activated B cells. Since methylation can affect gene expression, and so cell differentiation and immune evasion, we hypothesised that EBV-driven hypomethylation may affect the interaction between EBV infection and MS. We interrogated an existing dataset comprising three individuals with whole-genome bisulfite sequencing data from EBV transformed B cells and CD40L-activated B cells. DNA methylation surrounding MS risk SNPs associated with gene expression in LCLs (LCLeQTL) was less likely to be hypomethylated than randomly selected chromosomal regions. Differential methylation was independent of genomic features such as promoter regions, but genes preferentially expressed in EBV-infected B cells, including the LCLeQTL genes, were underrepresented in the hypomethylated regions. Our data does not indicate MS genetic risk is affected by EBV hypomethylation.


Asunto(s)
Linfocitos B/metabolismo , Herpesvirus Humano 4/genética , Esclerosis Múltiple/genética , Linfocitos B/fisiología , Metilación de ADN/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/metabolismo , Humanos , Regiones Promotoras Genéticas/genética
7.
Protein Expr Purif ; 118: 98-104, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26481271

RESUMEN

Tau protein consists of six different isoforms and each one has particular physiological roles. In order to analyze the specific function of each single isoforms, large quantity of highly purified tau isoforms is essential. Many studies have been done to purify tau isoforms by heat treatment, followed by perchloric acid and glycerol precipitation. We found out that 1N/4R tau is soluble in glycerol, that is why mentioned methods do not work for purifying this isoform. In this study, large amounts of active and highly purified (97%) 1N/4R tau protein has been prepared by utilization of trichloroacetic acid as precipitating agent.


Asunto(s)
Fraccionamiento Químico/métodos , Ácido Tricloroacético/química , Proteínas tau/aislamiento & purificación , Precipitación Química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Neurochem Res ; 40(4): 629-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577979

RESUMEN

Glutamate is an excitatory neurotransmitter that is released by the majority of central nervous system synapses and is involved in developmental processes, cognitive functions, learning and memory. Excessive elevated concentrations of Glu in synaptic cleft results in neural cell apoptosis which is called excitotoxicity causing neurodegenerative diseases. Hence, we investigated the possibility of extremely low frequency electromagnetic fields (ELF-EMF) as a risk factor which is able to change Glu concentration in synaptic clef. Synaptosomes as a model of nervous terminal were exposed to ELF-EMF for 15-55 min in flux intensity range from 0.1 to 2 mT and frequency range from 50 to 230 Hz. Finally, all raw data by INForm v4.02 software as an artificial neural network program was analyzed to predict the effect of whole mentioned range spectra. The results showed the tolerance of all effects between the ranges from -35 to +40 % compared to normal state when glutamatergic systems exposed to ELF-EMF. It indicates that glutamatergic system attempts to compensate environmental changes though release or reuptake in order to keep the system safe. Regarding to the wide range of ELF-EMF acquired in this study, the obtained outcomes have potential for developing treatments based on ELF-EMF for some neurological diseases; however, in vivo experiments on the cross linking responses between glutamatergic and cholinergic systems in the presence of ELF-EMF would be needed.


Asunto(s)
Campos Electromagnéticos , Ácido Glutámico/metabolismo , Redes Neurales de la Computación , Sinaptosomas/metabolismo , Animales , Microscopía Electrónica de Transmisión , Ratas Wistar , Sinaptosomas/ultraestructura
10.
Sci Rep ; 14(1): 6738, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509125

RESUMEN

Hypoxia-Inducible Factor-1α (HIF-1α) has presented a new direction for ischemic preconditioning of surgical flaps to promote their survival. In a previous study, we demonstrated the effectiveness of HIF-1a DNA plasmids in this application. In this study, to avoid complications associated with plasmid use, we sought to express HIF-1α through mRNA transfection and determine its biological activity by measuring the upregulation of downstream angiogenic genes. We transfected six different HIF-1a mRNAs-one predominant, three variant, and two novel mutant isoforms-into primary human dermal fibroblasts using Lipofectamine, and assessed mRNA levels using RT-qPCR. At all time points examined after transfection (3, 6, and 10 h), the levels of HIF-1α transcript were significantly higher in all HIF-1α transfected cells relative to the control (all p < 0.05, unpaired Student's T-test). Importantly, the expression of HIF-1α transcription response genes (VEGF, ANG-1, PGF, FLT1, and EDN1) was significantly higher in the cells transfected with all isoforms than with the control at six and/or ten hours post-transfection. All isoforms were transfected successfully into human fibroblast cells, resulting in the rapid upregulation of all five downstream angiogenic targets tested. These findings support the potential use of HIF-1α mRNA for protecting ischemic dermal flaps.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ARN Mensajero/metabolismo , Transfección , Péptidos y Proteínas de Señalización Intercelular/genética , Isoformas de Proteínas/genética
11.
J Biol Inorg Chem ; 18(3): 357-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23397429

RESUMEN

In recent decades, considerable efforts have been made to understand the mechanism of memory, cognition, and relevant neurodegenerative diseases in the human brain. Several studies have shown the importance of microtubule proteins in the memory mechanism and memory dysfunction. Microtubules possess dynamicity, which is essential for functions of neuronal networks. Microtubule-associated proteins, i.e., tau, play vital roles in microtubule stability. On the other hand, the ferromagnetic mineral magnetite (Fe(3)O(4)) has been detected in the normal human brain, and elevated levels of magnetite are also observed in the brains of Alzheimer's disease patients. Therefore, we propose that a relationship between microtubule organization in axons and brain magnetite nanoparticles is possible. In this study we found alterations of microtubule polymerization in the presence of increasing concentrations of magnetite through transmission electron microscopy images and a turbidimetry method. Structural changes of microtubule and tau protein, as an essential microtubule-associated protein for tubulin assembly, were detected via circular dichroism spectroscopy, intrinsic fluorescence, and 8-anilino-1-naphthalenesulfonic acid fluorometry. We predicted three possible binding sites on tau protein and one possible binding site on tubulin dimer for magnetite nanoparticles. Magnetite also causes the morphology of PC12 cells to change abnormally and cell viability to decrease. Finally, we suggest that magnetite changes microtubule dynamics and polymerization through two paths: (1) changing the secondary and tertiary structure of tubulin and (2) binding to either tubulin dimer or tau protein and preventing tau-tubulin interaction.


Asunto(s)
Encéfalo/metabolismo , Nanopartículas de Magnetita/análisis , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Supervivencia Celular , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Células PC12 , Unión Proteica , Ratas , Ovinos , Tubulina (Proteína)/ultraestructura
12.
Clin Transl Immunology ; 12(6): e1454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37337612

RESUMEN

Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease, characterised by the demyelination of neurons in the central nervous system. Whilst it is unclear what precisely leads to MS, it is believed that genetic predisposition combined with environmental factors plays a pivotal role. It is estimated that close to half the disease risk is determined by genetic factors. However, the risk of developing MS cannot be attributed to genetic factors alone, and environmental factors are likely to play a significant role by themselves or in concert with host genetics. Epstein-Barr virus (EBV) infection is the strongest known environmental risk factor for MS. There has been increasing evidence that leaves little doubt that EBV is necessary, but not sufficient, for developing MS. One plausible explanation is EBV may alter the host immune response in the presence of MS risk alleles and this contributes to the pathogenesis of MS. In this review, we discuss recent findings regarding how EBV infection may contribute to MS pathogenesis via interactions with genetic risk loci and discuss possible therapeutic interventions.

13.
Sci Rep ; 12(1): 2420, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165300

RESUMEN

The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG dinucleotides, nor a link between the activity of ZAP and the low CpG abundance of the SARS-CoV-2 genome.


Asunto(s)
COVID-19/genética , Fosfatos de Dinucleósidos/genética , Genoma Viral/genética , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Animales , Secuencia de Bases , Sitios de Unión/genética , COVID-19/virología , Fosfatos de Dinucleósidos/metabolismo , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Humanos , Motivos de Nucleótidos/genética , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/fisiología , Replicación Viral/genética
14.
Comput Struct Biotechnol J ; 20: 4975-4983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147666

RESUMEN

Copy Number Variation (CNV) refers to a type of structural genomic alteration in which a segment of chromosome is duplicated or deleted. To date, many CNVs have been identified as causative genetic elements for several diseases and phenotypes. However, performing a CNV-based genome-wide association study is challenging due to inconsistency in length and occurrence of CNVs across different individuals under investigation. One of the most efficient strategies to address this issue is building CNV regions (genomic regions in which CNVs are overlapping - CNVRs). However, this approach is susceptible to a high false positive rate due to overlapping and co-occurring of confounding CNVRs with true positive CNVRs. Here, we develop PeakCNV that differentiates false-positive CNVRs from true positives by calculating a new metric, independence ranking score, (IR-score) via a feature ranking approach. We compared the performance of PeakCNV with other current existing tools by carrying out two case studies one using the CNV genotype data for individuals with prostate cancer (194 cases and 2,392 healthy individuals) and the second one for individuals with neurodevelopmental disorders (19,642 cases and 6,451 healthy individuals). Crucially, our benchmarking analyses on prostate cancer cohort indicated that PeakCNV identifies a fewer risk candidate CNVRs with shorter lengths compared to other tools. Importantly, these CNVRs cover a greater proportion of case over healthy individuals compared to other tools. The accuracy of PeakCNV in identifying relevant candidate CNVRs was reproducible in the case study on neurodevelopmental disorders. Using data from the FANTOM5 expression atlas and the Clinical Genomic Database, we show that the candidate CNVRs identified by PeakCNV for neurodevelopmental disorders overlap with a greater number of genes with the brain-enriched expression, and a greater number of genes that are associated with neurological conditions compared to candidate CNVRs identified by other tools. Taken together, PeakCNV outperformed current existing CNV association study tools by identifying more biologically meaningful CNVRs relevant to the phenotype of interest. PeakCNV is publicly available for the analysis of CNV-associated diseases and is accessible from https://rdrr.io/github/mahdieh1/PeakCNV.

15.
Biomed Pharmacother ; 152: 113237, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716438

RESUMEN

Within tumors, chemokines and their cognate receptors are expressed by infiltrated leukocytes, cancerous cells, and related cells of stroma, like tumor-associated fibroblasts and tumor-associated macrophages. In malignancies, the altered expression of chemokines/chemokine receptors governs leukocyte infiltration and activation, epithelial-mesenchymal transition (EMT), cancer cell proliferation, angiogenesis, and metastasis. Non-coding RNAs (ncRNAs) contribute to multiple physiological and pathophysiological processes. Some miRNAs can exert anti-tumorigenic activity in digestive system malignancies by repressing the expression of tumor-promoting chemokines/chemokine receptors or by upregulating tumor-suppressing chemokines/chemokine receptors. However, many miRNAs exert pro-tumorigenic activity by suppressing the expression of chemokines/chemokine receptors or by upregulating tumor-promoting chemokines/chemokine receptors. LncRNA and circRNAs also exert pro- and anti-tumorigenic effects by targeting downstream miRNAs influencing the expression of tumor-promoting and tumor-suppressor chemokines/chemokine receptors. On the other side, some chemokines influence the expression of ncRNAs affecting tumor formation. The current review explains the communications between ncRNAs and chemokines/chemokine receptors in certain digestive system malignancies, such as gastric, colorectal, and pancreatic cancers and hepatocellular carcinoma to gain better insights into their basic crosstalk as well as possible therapeutic modalities.


Asunto(s)
Neoplasias del Sistema Digestivo , MicroARNs , Carcinogénesis , Quimiocinas/genética , Quimiocinas/metabolismo , Neoplasias del Sistema Digestivo/genética , Humanos , MicroARNs/genética , Neovascularización Patológica , Receptores de Quimiocina/metabolismo
16.
Mol Ther Oncolytics ; 27: 100-123, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36321132

RESUMEN

Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.

17.
Front Immunol ; 12: 732694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566997

RESUMEN

Multiple Sclerosis (MS) is a complex immune-mediated disease of the central nervous system. Treatment is based on immunomodulation, including specifically targeting B cells. B cells are the main host for the Epstein-Barr Virus (EBV), which has been described as necessary for MS development. Over 200 genetic loci have been identified as increasing susceptibility to MS. Many MS risk genes have altered expression in EBV infected B cells, dependent on the risk genotype, and are themselves regulated by the EBV transcription factor EBNA2. Females are 2-3 times more likely to develop MS than males. We investigated if MS risk loci might mediate the gender imbalance in MS. From a large public dataset, we identified gender-specific associations with EBV traits, and MS risk SNP/gene pairs with gender differences in their associations with gene expression. Some of these genes also showed gender differences in correlation of gene expression level with Estrogen Receptor 2. To test if estrogens may drive these gender specific differences, we cultured EBV infected B cells (lymphoblastoid cell lines, LCLs), in medium depleted of serum to remove the effects of sex hormones as well as the estrogenic effect of phenol red, and then supplemented with estrogen (100 nM estradiol). Estradiol treatment altered MS risk gene expression, LCL proliferation rate, EBV DNA copy number and EBNA2 expression in a sex-dependent manner. Together, these data indicate that there are estrogen-mediated gender-specific differences in MS risk gene expression and EBV functions. This may in turn contribute to gender differences in host response to EBV and to MS susceptibility.


Asunto(s)
Linfocitos B/virología , Infecciones por Virus de Epstein-Barr/virología , Hormonas Esteroides Gonadales/metabolismo , Herpesvirus Humano 4/patogenicidad , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple , Linfocitos B/inmunología , Linfocitos B/metabolismo , Línea Celular , Bases de Datos Genéticas , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/metabolismo , Femenino , Regulación de la Expresión Génica , Interacción Gen-Ambiente , Herpesvirus Humano 4/inmunología , Interacciones Huésped-Patógeno , Humanos , Masculino , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/virología , Sitios de Carácter Cuantitativo , Medición de Riesgo , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales
18.
EBioMedicine ; 71: 103572, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488019

RESUMEN

BACKGROUND: Epstein-Barr virus (EBV) infection may be necessary for the development of Multiple sclerosis (MS). Earlier we had identified six MS risk loci that are co-located with binding sites for the EBV transcription factor Epstein-Barr Nuclear Antigen 2 (EBNA2) in EBV-infected B cells (lymphoblastoid cell lines - LCLs). METHODS: We used an allele-specific chromatin immunoprecipitation PCR assay to assess EBNA2 allelic preference. We treated LCLs with a peptide inhibitor of EBNA2 (EBNA2-TAT), reasoning that inhibiting EBNA2 function would alter gene expression at these loci if it was mediated by EBNA2. FINDINGS: We found that EBNA2 binding was dependent on the risk allele for five of these six MS risk loci (p < 0·05). Treatment with EBNA2-TAT significantly altered the expression of TRAF3 (p < 0·05), CD40 (p < 0·001), CLECL1 (p <0·0001), TNFAIP8 (p < 0·001) and TNFRSF1A (p < 0·001). INTERPRETATION: These data suggest that EBNA2 can enhance or reduce expression of the gene depending on the risk allele, likely promoting EBV infection. This is consistent with the concept that these MS risk loci affect MS risk through altering the response to EBNA2. Together with the extensive data indicating a pathogenic role for EBV in MS, this study supports targeting EBV and EBNA2 to reduce their effect on MS pathogenesis. FUNDING: Funding was provided by grants from MS Research Australia, National Health and Medical Research Council of Australia, Australian Government Research Training Program, Multiple Sclerosis International Federation, Trish Multiple Sclerosis Research Foundation.


Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Esclerosis Múltiple/genética , Factores de Transcripción/metabolismo , Alelos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Linfocitos B/metabolismo , Linfocitos B/virología , Células Cultivadas , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidad , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Esclerosis Múltiple/virología , Unión Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo
19.
BMJ Open ; 11(1): e044497, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408218

RESUMEN

INTRODUCTION: Accurate triage is an important first step to effectively manage the clinical treatment of severe cases in a pandemic outbreak. In the current COVID-19 global pandemic, there is a lack of reliable clinical tools to assist clinicians to perform accurate triage. Host response biomarkers have recently shown promise in risk stratification of disease progression; however, the role of these biomarkers in predicting disease progression in patients with COVID-19 is unknown. Here, we present a protocol outlining a prospective validation study to evaluate the biomarkers' performance in predicting clinical outcomes of patients with COVID-19. METHODS AND ANALYSIS: This prospective validation study assesses patients infected with COVID-19, in whom blood samples are prospectively collected. Recruited patients include a range of infection severity from asymptomatic to critically ill patients, recruited from the community, outpatient clinics, emergency departments and hospitals. Study samples consist of peripheral blood samples collected into RNA-preserving (PAXgene/Tempus) tubes on patient presentation or immediately on study enrolment. Real-time PCR (RT-PCR) will be performed on total RNA extracted from collected blood samples using primers specific to host response gene expression biomarkers that have been previously identified in studies of respiratory viral infections. The RT-PCR data will be analysed to assess the diagnostic performance of individual biomarkers in predicting COVID-19-related outcomes, such as viral pneumonia, acute respiratory distress syndrome or bacterial pneumonia. Biomarker performance will be evaluated using sensitivity, specificity, positive and negative predictive values, likelihood ratios and area under the receiver operating characteristic curve. ETHICS AND DISSEMINATION: This research protocol aims to study the host response gene expression biomarkers in severe respiratory viral infections with a pandemic potential (COVID-19). It has been approved by the local ethics committee with approval number 2020/ETH00886. The results of this project will be disseminated in international peer-reviewed scientific journals.


Asunto(s)
Biomarcadores/metabolismo , COVID-19/metabolismo , Enfermedad Crítica/epidemiología , Servicio de Urgencia en Hospital/estadística & datos numéricos , Pandemias , SARS-CoV-2 , Triaje/métodos , Adulto , COVID-19/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Tiempo
20.
Sci Rep ; 10(1): 193, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932685

RESUMEN

Translating the findings of genome wide association studies (GWAS) to new therapies requires identification of the relevant immunological contexts to interrogate for genetic effects. In one of the largest GWAS, more than 200 risk loci have been identified for Multiple Sclerosis (MS) susceptibility. Infection with Epstein-Barr virus (EBV) appears to be necessary for the development of Multiple Sclerosis (MS). Many MS risk loci are associated with altered gene expression in EBV infected B cells (LCLs). We have interrogated this immunological context to identify interaction between MS risk loci and EBV DNA copy number, intrinsic growth rate and EBV encoded miRNA expression. The EBV DNA copy number was associated with significantly more risk alleles for MS than for other diseases or traits. EBV miRNAs BART4-3p and BART3-5p were highly associated with EBV DNA copy number and MS risk loci. The poliovirus receptor (PVR) risk SNP was associated with EBV DNA copy number, PVR and miRNA expression. Targeting EBV miRNAs BART4-3p and BART3-5p, and the gene PVR, may provide therapeutic benefit in MS. This study also indicates how immunological context and risk loci interactions can be exploited to validate and develop novel therapeutic approaches.


Asunto(s)
Variaciones en el Número de Copia de ADN , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/genética , Interacciones Huésped-Patógeno/genética , Esclerosis Múltiple/patología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Estudios de Cohortes , ADN Viral/análisis , ADN Viral/genética , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/virología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Herpesvirus Humano 4/aislamiento & purificación , Humanos , MicroARNs/genética , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/virología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA