Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(4): 580-589, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38501392

RESUMEN

The desirable pharmacological properties and a broad number of therapeutic activities have made peptides promising drugs over small organic molecules and antibody drugs. Nevertheless, toxic effects, such as hemolysis, have hampered the development of such promising drugs. Hence, a reliable computational tool to predict peptide hemolytic toxicity is enormously useful before synthesis and experimental evaluation. Currently, four web servers that predict hemolytic activity using machine learning (ML) algorithms are available; however, they exhibit some limitations, such as the need for a reliable negative set and limited application domain. Hence, we developed a robust model based on a novel theoretical approach that combines network science and a multiquery similarity searching (MQSS) method. A total of 1152 initial models were constructed from 144 scaffolds generated in a previous report. These were evaluated on external data sets, and the best models were fused and improved. Our best MQSS model I1 outperformed all state-of-the-art ML-based models and was used to characterize the prevalence of hemolytic toxicity on therapeutic peptides. Based on our model's estimation, the number of hemolytic peptides might be 3.9-fold higher than the reported.


Asunto(s)
Hemólisis , Péptidos , Humanos , Secuencia de Aminoácidos , Péptidos/farmacología , Péptidos/química , Algoritmos , Aprendizaje Automático
2.
J Comput Aided Mol Des ; 38(1): 9, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351144

RESUMEN

Notwithstanding the wide adoption of the OECD principles (or best practices) for QSAR modeling, disparities between in silico predictions and experimental results are frequent, suggesting that model predictions are often too optimistic. Of these OECD principles, the applicability domain (AD) estimation has been recognized in several reports in the literature to be one of the most challenging, implying that the actual reliability measures of model predictions are often unreliable. Applying tree-based error analysis workflows on 5 QSAR models reported in the literature and available in the QsarDB repository, i.e., androgen receptor bioactivity (agonists, antagonists, and binders, respectively) and membrane permeability (highest membrane permeability and the intrinsic permeability), we demonstrate that predictions erroneously tagged as reliable (AD prediction errors) overwhelmingly correspond to instances in subspaces (cohorts) with the highest prediction error rates, highlighting the inhomogeneity of the AD space. In this sense, we call for more stringent AD analysis guidelines which require the incorporation of model error analysis schemes, to provide critical insight on the reliability of underlying AD algorithms. Additionally, any selected AD method should be rigorously validated to demonstrate its suitability for the model space over which it is applied. These steps will ultimately contribute to more accurate estimations of the reliability of model predictions. Finally, error analysis may also be useful in "rational" model refinement in that data expansion efforts and model retraining are focused on cohorts with the highest error rates.


Asunto(s)
Algoritmos , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
3.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569252

RESUMEN

The racemization of biomolecules in the active site can reduce the biological activity of drugs, and the mechanism involved in this process is still not fully comprehended. The present study investigates the impact of aromaticity on racemization using advanced theoretical techniques based on density functional theory. Calculations were performed at the ωb97xd/6-311++g(d,p) level of theory. A compelling explanation for the observed aromatic stabilization via resonance is put forward, involving a carbanion intermediate. The analysis, employing Hammett's parameters, convincingly supports the presence of a negative charge within the transition state of aromatic compounds. Moreover, the combined utilization of natural bond orbital (NBO) analysis and intrinsic reaction coordinate (IRC) calculations confirms the pronounced stabilization of electron distribution within the carbanion intermediate. To enhance our understanding of the racemization process, a thorough examination of the evolution of NBO charges and Wiberg bond indices (WBIs) at all points along the IRC profile is performed. This approach offers valuable insights into the synchronicity parameters governing the racemization reactions.


Asunto(s)
Aminoácidos Aromáticos , Enlace de Hidrógeno
4.
Mar Drugs ; 18(7)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668814

RESUMEN

Ascidians are marine invertebrates associated with diverse microbial communities, embedded in their tunic, conferring special ecological and biotechnological relevance to these model organisms used in evolutionary and developmental studies. Next-generation sequencing tools have increased the knowledge of ascidians' associated organisms and their products, but proteomic studies are still scarce. Hence, we explored the tunic of three ascidian species using a shotgun proteomics approach. Proteins extracted from the tunic of Ciona sp., Molgula sp., and Microcosmus sp. were processed using a nano LC-MS/MS system (Ultimate 3000 liquid chromatography system coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer). Raw data was searched against UniProtKB - the Universal Protein Resource Knowledgebase (Bacteria and Metazoa section) using Proteome Discoverer software. The resulting proteins were merged with a non-redundant Antimicrobial Peptides (AMPs) database and analysed with MaxQuant freeware. Overall, 337 metazoan and 106 bacterial proteins were identified being mainly involved in basal metabolism, cytoskeletal and catalytic functions. 37 AMPs were identified, most of them attributed to eukaryotic origin apart from bacteriocins. These results and the presence of "Biosynthesis of antibiotics" as one of the most highlighted pathways revealed the tunic as a very active tissue in terms of bioactive compounds production, giving insights on the interactions between host and associated organisms. Although the present work constitutes an exploratory study, the approach employed revealed high potential for high-throughput characterization and biodiscovery of the ascidians' tunic and its microbiome.


Asunto(s)
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteoma , Proteómica , Urocordados/metabolismo , Animales , Cromatografía Liquida , Bases de Datos de Proteínas , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno , Microbiota , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Urocordados/microbiología
5.
Genomics ; 111(6): 1720-1727, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30508561

RESUMEN

The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.


Asunto(s)
Colubridae/metabolismo , Regulación de la Expresión Génica/fisiología , Glándula de Harder/metabolismo , Proteínas de Reptiles/biosíntesis , Venenos de Serpiente/biosíntesis , Transcriptoma/fisiología , Animales , Colubridae/genética , Cuba , Proteínas de Reptiles/genética , Venenos de Serpiente/genética
6.
BMC Bioinformatics ; 19(1): 166, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724166

RESUMEN

BACKGROUND: The development of new ortholog detection algorithms and the improvement of existing ones are of major importance in functional genomics. We have previously introduced a successful supervised pairwise ortholog classification approach implemented in a big data platform that considered several pairwise protein features and the low ortholog pair ratios found between two annotated proteomes (Galpert, D et al., BioMed Research International, 2015). The supervised models were built and tested using a Saccharomycete yeast benchmark dataset proposed by Salichos and Rokas (2011). Despite several pairwise protein features being combined in a supervised big data approach; they all, to some extent were alignment-based features and the proposed algorithms were evaluated on a unique test set. Here, we aim to evaluate the impact of alignment-free features on the performance of supervised models implemented in the Spark big data platform for pairwise ortholog detection in several related yeast proteomes. RESULTS: The Spark Random Forest and Decision Trees with oversampling and undersampling techniques, and built with only alignment-based similarity measures or combined with several alignment-free pairwise protein features showed the highest classification performance for ortholog detection in three yeast proteome pairs. Although such supervised approaches outperformed traditional methods, there were no significant differences between the exclusive use of alignment-based similarity measures and their combination with alignment-free features, even within the twilight zone of the studied proteomes. Just when alignment-based and alignment-free features were combined in Spark Decision Trees with imbalance management, a higher success rate (98.71%) within the twilight zone could be achieved for a yeast proteome pair that underwent a whole genome duplication. The feature selection study showed that alignment-based features were top-ranked for the best classifiers while the runners-up were alignment-free features related to amino acid composition. CONCLUSIONS: The incorporation of alignment-free features in supervised big data models did not significantly improve ortholog detection in yeast proteomes regarding the classification qualities achieved with just alignment-based similarity measures. However, the similarity of their classification performance to that of traditional ortholog detection methods encourages the evaluation of other alignment-free protein pair descriptors in future research.


Asunto(s)
Algoritmos , Bases de Datos de Proteínas , Árboles de Decisión , Proteoma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de Proteína/métodos
7.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37370330

RESUMEN

The antimicrobial resistance process has been accelerated by the over-prescription and misuse of antibiotics [...].

8.
Antibiotics (Basel) ; 12(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37107109

RESUMEN

Microbial biofilms cause several environmental and industrial issues, even affecting human health. Although they have long represented a threat due to their resistance to antibiotics, there are currently no approved antibiofilm agents for clinical treatments. The multi-functionality of antimicrobial peptides (AMPs), including their antibiofilm activity and their potential to target multiple microbes, has motivated the synthesis of AMPs and their relatives for developing antibiofilm agents for clinical purposes. Antibiofilm peptides (ABFPs) have been organized in databases that have allowed the building of prediction tools which have assisted in the discovery/design of new antibiofilm agents. However, the complex network approach has not yet been explored as an assistant tool for this aim. Herein, a kind of similarity network called the half-space proximal network (HSPN) is applied to represent/analyze the chemical space of ABFPs, aiming to identify privileged scaffolds for the development of next-generation antimicrobials that are able to target both planktonic and biofilm microbial forms. Such analyses also considered the metadata associated with the ABFPs, such as origin, other activities, targets, etc., in which the relationships were projected by multilayer networks called metadata networks (METNs). From the complex networks' mining, a reduced but informative set of 66 ABFPs was extracted, representing the original antibiofilm space. This subset contained the most central to atypical ABFPs, some of them having the desired properties for developing next-generation antimicrobials. Therefore, this subset is advisable for assisting the search for/design of both new antibiofilms and antimicrobial agents. The provided ABFP motifs list, discovered within the HSPN communities, is also useful for the same purpose.

10.
Antibiotics (Basel) ; 11(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35884190

RESUMEN

In the last two decades many reports have addressed the application of artificial intelligence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic scaffolds with promising biological activity. From AI perspective, evolutionary algorithms have been also applied to the rational generation of peptide libraries aimed at the optimization/design of AMPs. However, the literature has scarcely dedicated to other emerging non-conventional in silico approaches for the search/design of such bioactive peptides. Thus, the first motivation here is to bring up some non-standard peptide features that have been used to build classical ML predictive models. Secondly, it is valuable to highlight emerging ML algorithms and alternative computational tools to predict/design AMPs as well as to explore their chemical space. Another point worthy of mention is the recent application of evolutionary algorithms that actually simulate sequence evolution to both the generation of diversity-oriented peptide libraries and the optimization of hit peptides. Last but not least, included here some new considerations in proteogenomic analyses currently incorporated into the computational workflow for unravelling AMPs in natural sources.

11.
Antibiotics (Basel) ; 11(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35326864

RESUMEN

Peptide-based drugs are promising anticancer candidates due to their biocompatibility and low toxicity. In particular, tumor-homing peptides (THPs) have the ability to bind specifically to cancer cell receptors and tumor vasculature. Despite their potential to develop antitumor drugs, there are few available prediction tools to assist the discovery of new THPs. Two webservers based on machine learning models are currently active, the TumorHPD and the THPep, and more recently the SCMTHP. Herein, a novel method based on network science and similarity searching implemented in the starPep toolbox is presented for THP discovery. The approach leverages from exploring the structural space of THPs with Chemical Space Networks (CSNs) and from applying centrality measures to identify the most relevant and non-redundant THP sequences within the CSN. Such THPs were considered as queries (Qs) for multi-query similarity searches that apply a group fusion (MAX-SIM rule) model. The resulting multi-query similarity searching models (SSMs) were validated with three benchmarking datasets of THPs/non-THPs. The predictions achieved accuracies that ranged from 92.64 to 99.18% and Matthews Correlation Coefficients between 0.894-0.98, outperforming state-of-the-art predictors. The best model was applied to repurpose AMPs from the starPep database as THPs, which were subsequently optimized for the TH activity. Finally, 54 promising THP leads were discovered, and their sequences were analyzed to encounter novel motifs. These results demonstrate the potential of CSNs and multi-query similarity searching for the rapid and accurate identification of THPs.

12.
Front Chem ; 10: 959143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277354

RESUMEN

This study introduces a set of fuzzy spherically truncated three-dimensional (3D) multi-linear descriptors for proteins. These indices codify geometric structural information from kth spherically truncated spatial-(dis)similarity two-tuple and three-tuple tensors. The coefficients of these truncated tensors are calculated by applying a smoothing value to the 3D structural encoding based on the relationships between two and three amino acids of a protein embedded into a sphere. At considering, the geometrical center of the protein matches with center of the sphere, the distance between each amino acid involved in any specific interaction and the geometrical center of the protein can be computed. Then, the fuzzy membership degree of each amino acid from an spherical region of interest is computed by fuzzy membership functions (FMFs). The truncation value is finally a combination of the membership degrees from interacting amino acids, by applying the arithmetic mean as fusion rule. Several fuzzy membership functions with diverse biases on the calculation of amino acids memberships (e.g., Z-shaped (close to the center), PI-shaped (middle region), and A-Gaussian (far from the center)) were considered as well as traditional truncation functions (e.g., Switching). Such truncation functions were comparatively evaluated by exploring: 1) the frequency of membership degrees, 2) the variability and orthogonality analyses among them based on the Shannon Entropy's and Principal Component's methods, respectively, and 3) the prediction performance of alignment-free prediction of protein folding rates and structural classes. These analyses unraveled the singularity of the proposed fuzzy spherically truncated MDs with respect to the classical (non-truncated) ones and respect to the MDs truncated with traditional functions. They also showed an improved prediction power by attaining an external correlation coefficient of 95.82% in the folding rate modelling and an accuracy of 100% in distinguishing structural protein classes. These outcomes are better than the ones attained by existing approaches, justifying the theoretical contribution of this report. Thus, the fuzzy spherically truncated-based protein descriptors from MuLiMs-MCoMPAs (http://tomocomd.com/mulims-mcompas) are promising alignment-free predictors for modeling protein functions and properties.

13.
Antibiotics (Basel) ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36551365

RESUMEN

Multi-drug resistance in bacteria is a major health problem worldwide. To overcome this issue, new approaches allowing for the identification and development of antibacterial agents are urgently needed. Peptides, due to their binding specificity and low expected side effects, are promising candidates for a new generation of antibiotics. For over two decades, a large diversity of antimicrobial peptides (AMPs) has been discovered and annotated in public databases. The AMP family encompasses nearly 20 biological functions, thus representing a potentially valuable resource for data mining analyses. Nonetheless, despite the availability of machine learning-based approaches focused on AMPs, these tools lack evidence of successful application for AMPs' discovery, and many are not designed to predict a specific function for putative AMPs, such as antibacterial activity. Consequently, among the apparent variety of data mining methods to screen peptide sequences for antibacterial activity, only few tools can deal with such task consistently, although with limited precision and generally no information about the possible targets. Here, we addressed this gap by introducing a tool specifically designed to identify antibacterial peptides (ABPs) with an estimation of which type of bacteria is susceptible to the action of these peptides, according to their response to the Gram-staining assay. Our tool is freely available via a web server named ABP-Finder. This new method ranks within the top state-of-the-art ABP predictors, particularly in terms of precision. Importantly, we showed the successful application of ABP-Finder for the screening of a large peptide library from the human urine peptidome and the identification of an antibacterial peptide.

14.
ACS Omega ; 7(50): 46012-46036, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570318

RESUMEN

Antimicrobial peptides (AMPs) have appeared as promising compounds to treat a wide range of diseases. Their clinical potentialities reside in the wide range of mechanisms they can use for both killing microbes and modulating immune responses. However, the hugeness of the AMPs' chemical space (AMPCS), represented by more than 1065 unique sequences, has represented a big challenge for the discovery of new promising therapeutic peptides and for the identification of common structural motifs. Here, we introduce network science and a similarity searching approach to discover new promising AMPs, specifically antiparasitic peptides (APPs). We exploited the network-based representation of APPs' chemical space (APPCS) to retrieve valuable information by using three network types: chemical space (CSN), half-space proximal (HSPN), and metadata (METN). Some centrality measures were applied to identify in each network the most important and nonredundant peptides. Then, these central peptides were considered as queries (Qs) in group fusion similarity-based searches against a comprehensive collection of known AMPs, stored in the graph database StarPepDB, to propose new potential APPs. The performance of the resulting multiquery similarity-based search models (mQSSMs) was evaluated in five benchmarking data sets of APP/non-APPs. The predictions performed by the best mQSSM showed a strong-to-very-strong performance since their external Matthews correlation coefficient (MCC) values ranged from 0.834 to 0.965. Outstanding MCC values (>0.85) were attained by the mQSSM with 219 Qs from both networks CSN and HSPN with 0.5 as similarity threshold in external data sets. Then, the performance of our best mQSSM was compared with the APPs prediction servers AMPDiscover and AMPFun. The proposed model showed its relevance by outperforming state-of-the-art machine learning models to predict APPs. After applying the best mQSSM and additional filters on the non-APP space from StarPepDB, 95 AMPs were repurposed as potential APP hits. Due to the high sequence diversity of these peptides, different computational approaches were applied to identify relevant motifs for searching and designing new APPs. Lastly, we identified 11 promising APP lead candidates by using our best mQSSMs together with diversity-based network analyses, and 24 web servers for activity/toxicity and drug-like properties. These results support that network-based similarity searches can be an effective and reliable strategy to identify APPs. The proposed models and pipeline are freely available through the StarPep toolbox software at http://mobiosd-hub.com/starpep.

15.
Antibiotics (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35625201

RESUMEN

With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic ß subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the ß subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.

16.
Amino Acids ; 40(2): 431-42, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20563611

RESUMEN

Bacteriocins are proteinaceous toxins produced and exported by both gram-negative and gram-positive bacteria as a defense mechanism. The bacteriocin protein family is highly diverse, which complicates the identification of bacteriocin-like sequences using alignment approaches. The use of topological indices (TIs) irrespective of sequence similarity can be a promising alternative to predict proteinaceous bacteriocins. Thus, we present Topological Indices to BioPolymers (TI2BioP) as an alignment-free approach inspired in both the Topological Substructural Molecular Design (TOPS-MODE) and Markov Chain Invariants for Network Selection and Design (MARCH-INSIDE) methodology. TI2BioP allows the calculation of the spectral moments as simple TIs to seek quantitative sequence-function relationships (QSFR) models. Since hydrophobicity and basicity are major criteria for the bactericide activity of bacteriocins, the spectral moments ((HP)µ(k)) were derived for the first time from protein artificial secondary structures based on amino acid clustering into a Cartesian system of hydrophobicity and polarity. Several orders of (HP)µ(k) characterized numerically 196 bacteriocin-like sequences and a control group made up of 200 representative CATH domains. Subsequently, they were used to develop an alignment-free QSFR model allowing a 76.92% discrimination of bacteriocin proteins from other domains, a relevant result considering the high sequence diversity among the members of both groups. The model showed a prediction overall performance of 72.16%, detecting specifically 66.7% of proteinaceous bacteriocins whereas the InterProScan retrieved just 60.2%. As a practical validation, the model also predicted successfully the cryptic bactericide function of the Cry 1Ab C-terminal domain from Bacillus thuringiensis's endotoxin, which has not been detected by classical alignment methods.


Asunto(s)
Bacteriocinas/química , Biopolímeros/química , Secuencia de Aminoácidos , Biología Computacional , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
17.
J Theor Biol ; 273(1): 167-78, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21192951

RESUMEN

Alignment-free classifiers are especially useful in the functional classification of protein classes with variable homology and different domain structures. Thus, the Topological Indices to BioPolymers (TI2BioP) methodology (Agüero-Chapin et al., 2010) inspired in both the TOPS-MODE and the MARCH-INSIDE methodologies allows the calculation of simple topological indices (TIs) as alignment-free classifiers. These indices were derived from the clustering of the amino acids into four classes of hydrophobicity and polarity revealing higher sequence-order information beyond the amino acid composition level. The predictability power of such TIs was evaluated for the first time on the RNase III family, due to the high diversity of its members (primary sequence and domain organization). Three non-linear models were developed for RNase III class prediction: Decision Tree Model (DTM), Artificial Neural Networks (ANN)-model and Hidden Markov Model (HMM). The first two are alignment-free approaches, using TIs as input predictors. Their performances were compared with a non-classical HMM, modified according to our amino acid clustering strategy. The alignment-free models showed similar performances on the training and the test sets reaching values above 90% in the overall classification. The non-classical HMM showed the highest rate in the classification with values above 95% in training and 100% in test. Although the higher accuracy of the HMM, the DTM showed simplicity for the RNase III classification with low computational cost. Such simplicity was evaluated in respect to HMM and ANN models for the functional annotation of a new bacterial RNase III class member, isolated and annotated by our group.


Asunto(s)
Dinámicas no Lineales , Ribonucleasa III/química , Secuencia de Aminoácidos , Árboles de Decisión , Pruebas de Enzimas , Escherichia coli/enzimología , Cadenas de Markov , Datos de Secuencia Molecular , Redes Neurales de la Computación , Conformación Proteica , Curva ROC , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados , Ribonucleasa III/aislamiento & purificación , Alineación de Secuencia
18.
Curr Top Med Chem ; 21(7): 599-611, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33441066

RESUMEN

BACKGROUND: Molecular phylogenetic algorithms frequently disagree with the approaches considering reproductive compatibility and morphological criteria for species delimitation. The question stems if the resulting species boundaries from molecular, reproductive and/or morphological data are definitively not reconcilable; or if the existing phylogenetic methods are not sensitive enough to agree morphological and genetic variation in species delimitation. OBJECTIVE: We propose DISTATIS as an integrative framework to combine alignment-based (AB) and alignment-free (AF) distance matrices from ITS2 sequences/structures to shed light whether Gelasinospora and Neurospora are sister but independent genera. METHODS: We aimed at addressing this standing issue by harmonizing genus-specific classification based on their ascospore morphology and ITS2 molecular data. To validate our proposal, three phylogenetic approaches: i) traditional alignment-based, ii) alignment-free and iii) novel distance integrative (DI)-based were comparatively evaluated on a set of Gelasinospora and Neurospora species. All considered species have been extensively characterized at both the morphological and reproductive levels and there are known incongruences between their ascospore morphology and molecular data that hampers genus-specific delimitation. RESULTS: Traditional AB phylogenetic analyses fail at resolving the Gelasinospora and Neurospora genera into independent monophyletic clades following ascospore morphology criteria. In contrast, AF and DI approaches produced phylogenetic trees that could properly delimit the expected monophyletic clades. CONCLUSION: The DI approach outperformed the AF one in the sense that it could also divide the Neurospora species according to their reproduction mode.


Asunto(s)
Neurospora/clasificación , Filogenia , Sordariales/clasificación , Algoritmos
19.
FEBS Lett ; 595(2): 183-194, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151544

RESUMEN

Enzyme subunit interfaces have remarkable potential in drug design as both target and scaffold for their own inhibitors. We show an evolution-driven strategy for the de novo design of peptide inhibitors targeting interfaces of the Escherichia coli FoF1-ATP synthase as a case study. The evolutionary algorithm ROSE was applied to generate diversity-oriented peptide libraries by engineering peptide fragments from ATP synthase interfaces. The resulting peptides were scored with PPI-Detect, a sequence-based predictor of protein-protein interactions. Two selected peptides were confirmed by in vitro inhibition and binding tests. The proposed methodology can be widely applied to design peptides targeting relevant interfaces of enzymatic complexes.


Asunto(s)
Biología Computacional/métodos , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Fragmentos de Péptidos/farmacología , ATPasas de Translocación de Protón/metabolismo , Algoritmos , Simulación por Computador , Diseño de Fármacos , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Fragmentos de Péptidos/química , Biblioteca de Péptidos , Unión Proteica/efectos de los fármacos , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Alineación de Secuencia , Relación Estructura-Actividad
20.
Mol Divers ; 14(2): 349-69, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19578942

RESUMEN

The toxicity and low success of current treatments for Leishmaniosis determines the search of new peptide drugs and/or molecular targets in Leishmania pathogen species (L. infantum and L. major). For example, Ribonucleases (RNases) are enzymes relevant to several biologic processes; then, theoretical and experimental study of the molecular diversity of Peptide Mass Fingerprints (PMFs) of RNases is useful for drug design. This study introduces a methodology that combines QSAR models, 2D-Electrophoresis (2D-E), MALDI-TOF Mass Spectroscopy (MS), BLAST alignment, and Molecular Dynamics (MD) to explore PMFs of RNases. We illustrate this approach by investigating for the first time the PMFs of a new protein of L. infantum. Here we report and compare new versus old predictive models for RNases based on Topological Indices (TIs) of Markov Pseudo-Folding Lattices. These group of indices called Pseudo-folding Lattice 2D-TIs include: Spectral moments pi ( k )(x,y), Mean Electrostatic potentials xi ( k )(x,y), and Entropy measures theta ( k )(x,y). The accuracy of the models (training/cross-validation) was as follows: xi ( k )(x,y)-model (96.0%/91.7%)>pi ( k )(x,y)-model (84.7/83.3) > theta ( k )(x,y)-model (66.0/66.7). We also carried out a 2D-E analysis of biological samples of L. infantum promastigotes focusing on a 2D-E gel spot of one unknown protein with M<20, 100 and pI <7. MASCOT search identified 20 proteins with Mowse score >30, but not one >52 (threshold value), the higher value of 42 was for a probable DNA-directed RNA polymerase. However, we determined experimentally the sequence of more than 140 peptides. We used QSAR models to predict RNase scores for these peptides and BLAST alignment to confirm some results. We also calculated 3D-folding TIs based on MD experiments and compared 2D versus 3D-TIs on molecular phylogenetic analysis of the molecular diversity of these peptides. This combined strategy may be of interest in drug development or target identification.


Asunto(s)
Leishmania infantum/química , Mapeo Peptídico/métodos , Proteínas Protozoarias/química , Relación Estructura-Actividad Cuantitativa , Ribonucleasas/química , Células Cultivadas , Biología Computacional/métodos , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Leishmania infantum/metabolismo , Cadenas de Markov , Simulación de Dinámica Molecular , Pliegue de Proteína , Proteínas Protozoarias/metabolismo , Ribonucleasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA