RESUMEN
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.
Asunto(s)
Trastorno Autístico/genética , Mapeo Cromosómico/métodos , Cromosomas Humanos Par 16/fisiología , Obesidad/genética , Adolescente , Adulto , Anciano , Trastorno del Espectro Autista/genética , Índice de Masa Corporal , Niño , Preescolar , Cromatina/metabolismo , Cromatina/fisiología , Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Microcefalia/genética , Persona de Mediana Edad , FenotipoRESUMEN
Duplications at 2q24.3 encompassing the voltage-gated sodium channel gene cluster are associated with early onset epilepsy. All cases described in the literature have presented in addition with different degrees of intellectual disability, and have involved neighbouring genes in addition to the sodium channel gene cluster. Here, we report eight new cases with overlapping duplications at 2q24 ranging from 0.05 to 7.63 Mb in size. Taken together with the previously reported cases, our study suggests that having an extra copy of SCN2A has an effect on epilepsy pathogenesis, causing benign familial infantile seizures which eventually disappear at the age of 1-2 years. However, the number of copies of SCN2A does not appear to have an effect on cognitive outcome.
Asunto(s)
Duplicación de Gen , Predisposición Genética a la Enfermedad/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.3/genética , Convulsiones/genética , Canales de Sodio/genética , Adolescente , Edad de Inicio , Niño , Desarrollo Infantil , Preescolar , Cromosomas Humanos Par 2/genética , Femenino , Humanos , Hibridación Fluorescente in Situ , Recién Nacido , Inteligencia , Masculino , Convulsiones/psicologíaRESUMEN
Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Obesidad/genética , Obesidad/fisiopatología , Penetrancia , Adolescente , Adulto , Edad de Inicio , Envejecimiento , Índice de Masa Corporal , Estudios de Casos y Controles , Niño , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/genética , Estudios de Cohortes , Europa (Continente) , Femenino , Estudio de Asociación del Genoma Completo , Heterocigoto , Humanos , Patrón de Herencia/genética , Masculino , Mutación/genética , Obesidad/complicaciones , Reproducibilidad de los Resultados , Caracteres Sexuales , Adulto JovenRESUMEN
Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogonadism and feeding difficulties. Female carriers are often phenotypically normal or show a similar but milder phenotype, as in most cases the X-chromosome harbouring the duplication is subject to inactivation. Xq28, which includes MECP2 is the major locus for submicroscopic X-chromosome duplications, whereas duplications in Xq25 and Xq26 have been reported in only a few cases. Using genome-wide array platforms we identified overlapping interstitial Xq25q26 duplications ranging from 0.2 to 4.76 Mb in eight unrelated families with in total five affected males and seven affected females. All affected males shared a common phenotype with intrauterine- and postnatal growth retardation and feeding difficulties in childhood. Three had microcephaly and two out of five suffered from epilepsy. In addition, three males had a distinct facial appearance with congenital bilateral ptosis and large protruding ears and two of them showed a cleft palate. The affected females had various clinical symptoms similar to that of the males with congenital bilateral ptosis in three families as most remarkable feature. Comparison of the gene content of the individual duplications with the respective phenotypes suggested three critical regions with candidate genes (AIFM1, RAB33A, GPC3 and IGSF1) for the common phenotypes, including candidate loci for congenital bilateral ptosis, small head circumference, short stature, genital and digital defects.
Asunto(s)
Anomalías Múltiples/genética , Blefaroptosis/congénito , Duplicación Cromosómica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Adulto , Animales , Blefaroptosis/genética , Estatura/genética , Niño , Fisura del Paladar/genética , Femenino , Dedos/anomalías , Humanos , Discapacidad Intelectual/genética , Cariotipificación , Masculino , Ratones , Ratones Transgénicos , Microcefalia/genética , SíndromeRESUMEN
Split hand/foot malformation (SHFM) with long-bone deficiency (SHFLD, MIM#119100) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. Previous published data reported several unrelated patients with 17p13.3 duplication and SHFLD. Recently, the minimal critical region had been reduced, suggesting that BHLHA9 copy number gains are associated with this limb defect. Here, we report on 13 new families presenting with ectrodactyly and harboring a BHLHA9 duplication.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Genes Duplicados , Deformidades Congénitas de las Extremidades/genética , Tibia/anomalías , Cromosomas Humanos Par 17/genética , Femenino , Humanos , Deformidades Congénitas de las Extremidades/fisiopatología , Masculino , Linaje , Fenotipo , Tibia/fisiopatologíaRESUMEN
Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be characterized by karyotype. In many prenatal cases of de novo sSMC, the outcome of pregnancy is difficult to predict because the euchromatin content is unclear. This study aimed to determine the presence or absence of euchromatin material of 39 de novo prenatally ascertained sSMC by array-comparative genomic hybridization (array-CGH) or single nucleotide polymorphism (SNP) array. Cases were prospectively ascertained from the study of 65,000 prenatal samples [0.060%; 95% confidence interval (CI), 0.042-0.082]. Array-CGH showed that 22 markers were derived from non-acrocentric markers (56.4%) and 7 from acrocentic markers (18%). The 10 additional cases remained unidentified (25.6%), but 7 of 10 could be further identified using fluorescence in situ hybridization; 69% of de novo sSMC contained euchromatin material, 95.4% of which for non-acrocentric markers. Some sSMC containing euchromatin had a normal phenotype (31% for non-acrocentric and 75% for acrocentric markers). Statistical differences between normal and abnormal phenotypes were shown for the size of the euchromatin material (more or less than 1 Mb, p = 0.0006) and number of genes (more or less than 10, p = 0.0009). This study is the largest to date and shows the utility of array-CGH or SNP array in the detection and characterization of de novo sSMC in a prenatal context.
Asunto(s)
Aberraciones Cromosómicas , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Pronóstico , Adulto , Hibridación Genómica Comparativa , Femenino , Francia , Estudios de Asociación Genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Embarazo , Diagnóstico Prenatal , Estudios Prospectivos , Riesgo , Suiza , Adulto JovenRESUMEN
BACKGROUND: Congenital deletions affecting 3q11q23 have rarely been reported and only five cases have been molecularly characterised. Genotype-phenotype correlation has been hampered by the variable sizes and breakpoints of the deletions. In this study, 14 novel patients with deletions in 3q11q23 were investigated and compared with 13 previously reported patients. METHODS: Clinical data were collected from 14 novel patients that had been investigated by high resolution microarray techniques. Molecular investigation and updated clinical information of one cytogenetically previously reported patient were also included. RESULTS: The molecular investigation identified deletions in the region 3q12.3q21.3 with different boundaries and variable sizes. The smallest studied deletion was 580 kb, located in 3q13.31. Genotype-phenotype comparison in 24 patients sharing this shortest region of overlapping deletion revealed several common major characteristics including significant developmental delay, muscular hypotonia, a high arched palate, and recognisable facial features including a short philtrum and protruding lips. Abnormal genitalia were found in the majority of males, several having micropenis. Finally, a postnatal growth pattern above the mean was apparent. The 580 kb deleted region includes five RefSeq genes and two of them are strong candidate genes for the developmental delay: DRD3 and ZBTB20. CONCLUSION: A newly recognised 3q13.31 microdeletion syndrome is delineated which is of diagnostic and prognostic value. Furthermore, two genes are suggested to be responsible for the main phenotype.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 3 , Discapacidades del Desarrollo/genética , Facies , Genitales Masculinos/anomalías , Trastornos del Crecimiento/genética , Discapacidades del Desarrollo/diagnóstico , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Receptores de Dopamina D3/genética , Síndrome , Factores de Transcripción/genéticaRESUMEN
Most microdeletion syndromes identified before the implementation of array-comparative genomic hybridization (array-CGH) were presumed to be well-defined clinical entities. However, the introduction of whole-genome screening led not only to the description of new syndromes but also to the recognition of a broader spectrum of features for well-known syndromes. Here, we report on 10 patients presenting with mental retardation associated with atypical features not suggestive of a known microdeletion and a normal standard karyotype. Array-CGH analyses revealed five microdeletions in the DiGeorge region, three microdeletions in the Williams-Beuren region and two microdeletions in the Smith-Magenis region. Reevaluation in these patients confirmed that the diagnosis remained difficult on clinical grounds and emphasized that well-known genomic disorders can have a phenotype that is heterogeneous and more variable than originally thought. The widespread use of array-CGH shows that such patients may be more readily achieved on the basis of genotype rather than phenotype.
Asunto(s)
Anomalías Múltiples/diagnóstico , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 7/genética , Discapacidad Intelectual/diagnóstico , Anomalías Múltiples/genética , Adolescente , Adulto , Preescolar , Hibridación Genómica Comparativa , Genotipo , Humanos , Discapacidad Intelectual/genética , Cariotipo , FenotipoRESUMEN
Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Corpus callosum abnormalities are common brain malformations with a wide clinical spectrum ranging from severe intellectual disability to normal cognitive function. The etiology is expected to be genetic in as much as 30-50% of the cases, but the underlying genetic cause remains unknown in the majority of cases. By next-generation mate-pair sequencing we mapped the chromosomal breakpoints of a patient with a de novo balanced translocation, t(1;6)(p31;q25), agenesis of corpus callosum (CC), intellectual disability, severe speech impairment, and autism. The chromosome 6 breakpoint truncated ARID1B which was also truncated in a recently published translocation patient with a similar phenotype. Quantitative polymerase chain reaction (Q-PCR) data showed that a primer set proximal to the translocation showed increased expression of ARID1B, whereas primer sets spanning or distal to the translocation showed decreased expression in the patient relative to a non-related control set. Phenotype-genotype comparison of the translocation patient to seven unpublished patients with various sized deletions encompassing ARID1B confirms that haploinsufficiency of ARID1B is associated with CC abnormalities, intellectual disability, severe speech impairment, and autism. Our findings emphasize that ARID1B is important in human brain development and function in general, and in the development of CC and in speech development in particular.
Asunto(s)
Anomalías Múltiples/genética , Agenesia del Cuerpo Calloso/genética , Trastorno Autístico/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Trastornos del Habla/genética , Factores de Transcripción/genética , Adulto , Preescolar , Haploinsuficiencia , Humanos , Masculino , Persona de Mediana EdadRESUMEN
BACKGROUND: Over the last few years, array-comparative genomic hybridisation (CGH) has considerably improved our ability to detect cryptic unbalanced rearrangements in patients with syndromic mental retardation. METHOD: Molecular karyotyping of six patients with syndromic mental retardation was carried out using whole-genome oligonucleotide array-CGH. RESULTS: 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb were detected in five unrelated patients with the following phenotypic similarities: severe mental retardation with absent speech, hypotonia and stereotypic movements. Facial dysmorphic features, epilepsy and/or cerebral malformations were also present in most of these patients. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, the gene for a protein known to act in brain as a neurogenesis effector, which regulates excitatory synapse number. In a patient with a similar phenotype, an MEF2C nonsense mutation was subsequently identified. CONCLUSION: Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations.
Asunto(s)
Cerebro/anomalías , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Proteínas de Dominio MADS/genética , Factores Reguladores Miogénicos/genética , Trastorno de Movimiento Estereotipado/genética , Cerebro/metabolismo , Niño , Preescolar , Haploidia , Humanos , Lactante , Factores de Transcripción MEF2RESUMEN
BACKGROUND Genome-wide screening of large patient cohorts with mental retardation using microarray-based comparative genomic hybridisation (array-CGH) has recently led to identification several novel microdeletion and microduplication syndromes. METHODS Owing to the national array-CGH network funded by the French Ministry of Health, shared information about patients with rare disease helped to define critical intervals and evaluate their gene content, and finally determine the phenotypic consequences of genomic array findings. RESULTS In this study, nine unrelated patients with overlapping de novo interstitial microdeletions involving 4q21 are reported. Several major features are common to all patients, including neonatal muscular hypotonia, severe psychomotor retardation, marked progressive growth restriction, distinctive facial features and absent or severely delayed speech. The boundaries and the sizes of the nine deletions are different, but an overlapping region of 1.37 Mb is defined; this region contains five RefSeq genes: PRKG2, RASGEF1B, HNRNPD, HNRPDL and ENOPH1. DISCUSSION Adding new individuals with similar clinical features and 4q21 deletion allowed us to reduce the critical genomic region encompassing two genes, PRKG2 and RASGEF1B. PRKG2 encodes cGMP-dependent protein kinase type II, which is expressed in brain and in cartilage. Information from genetically modified animal models is pertinent to the clinical phenotype. RASGEF1B is a guanine nucleotide exchange factor for Ras family proteins, and several members have been reported as key regulators of actin and microtubule dynamics during both dendrite and spine structural plasticity. CONCLUSION Clinical and molecular delineation of 4q21 deletion supports a novel microdeletion syndrome and suggests a major contribution of PRKG2 and RASGEF1B haploinsufficiency to the core phenotype.
Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 4/genética , Trastornos del Crecimiento/patología , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/patología , Anomalías Múltiples/patología , Adolescente , Niño , Preescolar , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Hibridación Genómica Comparativa , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Síndrome , Adulto JovenRESUMEN
Coffin-Lowry syndrome is an X-linked disorder characterized by mental retardation, characteristic facial features, skeletal abnormalities, and tapering fingers. Herein we report a novel missense mutation in exon 7 at codon 180 in the RPS6KA3 gene in a boy with Coffin-Lowry syndrome.
Asunto(s)
Síndrome de Coffin-Lowry/genética , Mutación Missense/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Niño , Codón/genética , Síndrome de Coffin-Lowry/diagnóstico por imagen , Hibridación Genómica Comparativa , Exones/genética , Humanos , Vértebras Lumbares/anomalías , Vértebras Lumbares/diagnóstico por imagen , Masculino , Radiografía , Sacro/anomalías , Sacro/diagnóstico por imagen , Disrafia Espinal/diagnóstico por imagen , Disrafia Espinal/genéticaRESUMEN
The increasing use of array-comparative genomic hybridization (array-CGH) to identify copy number variations (CNVs) in patients with developmental delay (DD), mental retardation and/or dysmorphic features has allowed the recent recognition of numerous genomic imbalances, including the 15q13.3 microdeletion. Patients with this microdeletion generally present with relatively consistent breakpoints at BP4 and BP5, which include the CHRNA7 gene. About 100 index cases have been reported since the first publication in 2008. This large number of patients ascertained through highly variable samples has been necessary to describe the full phenotypic spectrum of this microdeletion, ranging from mental retardation with dysmorphic features, epilepsy, neuropsychiatric disturbances with or without cognitive impairment to complete absence of anomalies. Here, we describe a collaborative study reporting a new cohort of 12 index patients and 13 relatives carrying a heterozygous BP4-BP5 microdeletion out of a series of 4625 patients screened by array-CGH for DD. We confirm the clinical expressivity of the disease as well as the incomplete penetrance in seven families. We showed through a review of the literature that males are more likely to be symptomatic. Sequence analysis of CHRNA7 yielded no data to support the unmasking of recessive variants as a cause of phenotypic variability. We also report the first patient carrying a 15q13.3 homozygous microdeletion inherited from both parents. He had severe epileptic encephalopathy with retinopathy, autistic features and choreoathetosis. Besides the classical approximately 1.5 Mb BP4-BP5 microdeletion, we also describe three index patients and two relatives with a smaller 500 kb microdeletion, including the CHRNA7 gene.
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 15/genética , Adolescente , Emparejamiento Base/genética , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Heterocigoto , Humanos , Patrón de Herencia/genética , Masculino , Linaje , FenotipoRESUMEN
BACKGROUND: The Wolf-Hirschhorn syndrome (WHS) is usually caused by terminal deletions of the short arm of chromosome 4 and is phenotypically defined by growth and mental retardation, seizures, and specific craniofacial manifestations. Large variation is observed in phenotypic expression of these features. In order to compare the phenotype with the genotype, we localised the breakpoints of the 4 pter aberrations using a chromosome 4 specific tiling BAC/PAC array. METHODS: In total, DNA from 21 patients was analysed, of which 8 had a cytogenetic visible and 13 a submicroscopic deletion. RESULTS AND CONCLUSION: In addition to classical terminal deletions sized between 1.9 and 30 Mb, we observed the smallest terminal deletion (1.4 Mb) ever reported in a patient with mild WHS stigmata. In addition, we identified and mapped interstitial deletions in four patients. This study positions the genes causing microcephaly, intrauterine and postnatal growth retardation between 0.3 and 1.4 Mb and further refines the regions causing congenital heart disease, cleft lip and/or palate, oligodontia, and hypospadias.
Asunto(s)
Cromosomas Humanos Par 4/genética , Síndrome de Wolf-Hirschhorn/genética , Niño , Rotura Cromosómica , Deleción Cromosómica , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales de Bacteriófagos P1/genética , Femenino , Genotipo , Humanos , Hibridación Fluorescente in Situ , Masculino , Hibridación de Ácido Nucleico , FenotipoRESUMEN
Isochromosome of the long arm of chromosome 20 with loss of interstitial material [ider(20q)] is a variant of deletion of chromosome 20q and a rare abnormality in myelodysplastic syndrome (MDS). We studied seven cases with an ider(20q) in MDS. Fluorescence in situ hybridization (FISH) studies showed all proximal breakpoints to be consistently located in 20q11.21 band whereas distal breakpoints were variable. Amplification of HCK, TNFRSF6B and DIDO1 genes included in retained regions associated with loss of tumour suppressor genes in deleted regions could explain cell tumour progression and possibly the less favourable prognosis of ider(20q) compared with del(20q).
Asunto(s)
Cromosomas Humanos Par 20 , Isocromosomas , Síndromes Mielodisplásicos/genética , Anciano de 80 o más Años , Rotura Cromosómica , Proteínas de Unión al ADN/genética , Femenino , Amplificación de Genes , Eliminación de Gen , Humanos , Hibridación Fluorescente in Situ/métodos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-hck/genética , Miembro 6b de Receptores del Factor de Necrosis Tumoral/genéticaRESUMEN
BACKGROUND: Smith-Magenis syndrome (SMS) is rare (prevalence 1 in 25 000) and is associated with psychomotor delay, a particular behavioural pattern and congenital anomalies. SMS is often due to a chromosomal deletion of <4 Mb at the 17p11.2 locus, leading to haploinsufficiency of numerous genes. Mutations of one of these gemes, RAI1, seems to be responsible for the main features found with heterozygous 17p11.2 deletions. METHODS: We studied DNA from 30 patients with SMS using a 300 bp amplimers comparative genome hybridisation array encompassing 75 loci from a 22 Mb section from the short arm of chromosome 17. RESULTS: Three patients had large deletions (10%). Genotype-phenotype correlation showed that two of them had cleft palate, which was not found in any of the other patients with SMS (p<0.007, Fisher's exact test). The smallest extra-deleted region associated with cleft palate in SMS is 1.4 Mb, contains <16 genes and is located at 17p11.2-17p12. Gene expression array data showed that the ubiquitin B precursor (UBB) is significantly expressed in the first branchial arch in the fourth and fifth weeks of human development. CONCLUSION: These data support UBB as a good candidate gene for isolated cleft palate.
Asunto(s)
Cromosomas Humanos Par 17 , Fisura del Paladar/genética , Discapacidad Intelectual/genética , Hibridación de Ácido Nucleico , Factores de Transcripción/genética , Mapeo Cromosómico , Anomalías Congénitas/genética , Genotipo , Humanos , Trastornos Mentales/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Eliminación de Secuencia , TransactivadoresRESUMEN
Chromosomal translocations that target HMGA2 at chromosome band 12q14 are seen in a variety of malignancies, notably lipoma, pleomorphic salivary adenoma and uterine leiomyoma. Although some HMGA2 fusion genes have been reported, several lines of evidence suggest that the critical pathogenic event is the expression of truncated HMGA2 isoforms. We report here the involvement of HMGA2 in six patients with myeloid neoplasia, dysplastic features and translocations or an inversion involving chromosome bands 12q13-15 and either 7p12, 8q22, 11q23, 12p11, 14q31 or 20q11. Breaks within or very close to HMGA2 were found in all six cases by molecular cytogenetic analysis, leading to overexpression of this gene as assessed by RT-PCR. Truncated transcripts consisting of HMGA2 exons 1-2 or exons 1-3 spliced to intron-derived sequences were identified in two patients, but were not seen in controls. These findings suggest that abnormalities of HMGA2 play an important and previously unsuspected role in myelodysplasia.
Asunto(s)
Proteína HMGA2/genética , Síndromes Mielodisplásicos/genética , Neoplasias/genética , Translocación Genética , Adenoma/genética , Secuencia de Bases , Bandeo Cromosómico , Mapeo Cromosómico , Cromosomas Humanos Par 11 , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 7 , Cartilla de ADN , ADN Complementario/genética , Exones , Reordenamiento Génico , Humanos , Lipoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de las Glándulas Salivales/genética , Transcripción GenéticaRESUMEN
Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/deficiencia , Deleción Cromosómica , Proteínas Supresoras de Tumor/deficiencia , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/anomalías , Encéfalo/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/patología , Femenino , Eliminación de Gen , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/patología , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Defectos del Tubo Neural/patología , Fenotipo , Síndrome , Proteínas Supresoras de Tumor/metabolismoRESUMEN
To accurately estimate the incidence of HOX11L2 expression, and determine the associated cytogenetic features, in T-cell acute lymphoblastic leukemia (T-ALL), the Groupe Français de Cytogénétique Hématologique (GFCH) carried out a retrospective study of both childhood and adult patients. In total, 364 patients were included (211 children =15 years and 153 adults), and 67 (18.5%) [47 children (22.4%) and 20 adults (13.1%)] were shown to either harbor the t(5;14)q35;q32) translocation or express the HOX11L2 gene or both. Most of the common hematological parameters did not show significant differences within positive and negative populations, whereas the incidence of CD1a+/CD10+ and cytoplasmic CD3+ patients was significantly higher in positive than in negative children. Out of the 63 positive patients investigated by conventional cytogenetics, 32 exhibited normal karyotype, whereas the others 31 showed clonal chromosome abnormalities, which did not include classical T-ALL specific translocations. Involvement of the RANBP17/HOX11L2 locus was ascertained by fluorescence in situ hybridization in six variant or alternative (three-way translocation or cytogenetic partner other than 14q32) translocations out of the 223 patients. Our results also show that HOX11L2 expression essentially occurs as a result of a 5q35 rearrangement, but is not associated with another identified T-ALL specific recurrent genetic abnormality, such as SIL-TAL fusion or HOX11 expression.