Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 71(5): 1750-1765, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31505038

RESUMEN

BACKGROUND AND AIMS: Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS: To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and ß-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS: Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.


Asunto(s)
Benzodioxoles/uso terapéutico , Colangitis Esclerosante/tratamiento farmacológico , Colestasis/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Cirrosis Hepática Biliar/prevención & control , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/uso terapéutico , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Ácidos y Sales Biliares/metabolismo , Células CACO-2 , Colangitis Esclerosante/complicaciones , Colestasis/complicaciones , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Cirrosis Hepática Biliar/etiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/toxicidad , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
2.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672787

RESUMEN

Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge.


Asunto(s)
Proteínas de la Membrana/deficiencia , Monoacilglicerol Lipasas/deficiencia , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/patología , Aumento de Peso , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Humanos , Inflamación/patología , Metabolismo de los Lípidos , Hígado/patología , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Ácido Oléico , Fenotipo , Células U937
3.
Liver Int ; 40(5): 1098-1110, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32043752

RESUMEN

BACKGROUND AND AIMS: The genetic PNPLA3 polymorphism I148M has been extensively associated with higher risk for development and progression of NAFLD towards NASH. METHODS: PNPLA3 and α-SMA expression were quantified in liver biopsies collected from NASH patients (n = 26) with different fibrosis stages and PNPLA3 genotypes. To study the potential mechanisms driving PNPLA3 expression during NASH progression towards fibrosis, hepatocytes and hepatic stellate cells (HSCs) were cultivated in low and high glucose medium. Moreover, hepatocytes were treated with increasing concentrations of palmitic acid alone or in combination with glucose. Conditioned media were collected from challenged hepatocytes to stimulate HSCs. RESULTS: Tissue expression of PNPLA3 was significantly enhanced in biopsies of patients carrying the I148M polymorphism compared to wild type (WT). In NASH biopsies, PNPLA3 significantly correlated with fibrosis stage and α-SMA levels independently of PNPLA3 genotype. In line, PNPLA3 expression was higher in α-SMA positive cells. Low glucose increased PNPLA3 in HSCs, whereas high glucose induced PNPLA3 and de-novo lipogenesis-related genes expression in hepatocytes. Palmitic acid induced fat accumulation and cell stress markers in hepatocytes, which could be counteracted by oleic acid. Conditioned media collected from lipotoxic challenged hepatocytes markedly induced PNPLA3 mRNA and protein levels, fibrogenic and autophagic markers and promoted migration in HSCs. Notably, conditioned media collected from hepatocytes cultivated with both glucose and palmitic acid exacerbated HSCs migration, PNPLA3 and fibrogenic gene expression, promoting release of cytokines from HSCs. CONCLUSIONS: Collectively, our observations uncover the diverse metabolic regulation of PNPLA3 among different hepatic cell populations and support its relation to fibrosis progression.


Asunto(s)
Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
4.
J Lipid Res ; 60(7): 1284-1292, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048404

RESUMEN

Monoacylglycerol lipase (MGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. To examine the role of MGL in hepatic steatosis, WT and MGL KO (MGL-/-) mice were challenged with a Western diet (WD) over 12 weeks. Lipid metabolism, inflammation, and fibrosis were assessed by serum biochemistry, histology, and gene-expression profiling of liver and adipose depots. Intestinal fat absorption was measured by gas chromatography. Primary adipocyte and 3T3-L1 cells were analyzed by flow cytometry and Western blot. Human hepatocytes were treated with MGL inhibitor JZL184. The absence of MGL protected mice from hepatic steatosis by repressing key lipogenic enzymes in liver (Srebp1c, Pparγ2, and diacylglycerol O-acyltransferase 1), while promoting FA oxidation. Liver inflammation was diminished in MGL-/- mice fed a WD, as evidenced by diminished epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (F4/80) staining and C-C motif chemokine ligand 2 gene expression, whereas fibrosis remained unchanged. Absence of MGL promoted fat storage in gonadal white adipose tissue (gWAT) with increased lipogenesis and unchanged lipolysis, diminished inflammation in gWAT, and subcutaneous AT. Intestinal fat malabsorption prevented ectopic lipid accumulation in livers of MGL-/- mice fed a WD. In vitro experiments demonstrated increased adipocyte size/lipid content driven by PPARγ. In conclusion, our data uncover that MGL deletion improves some aspects of nonalcoholic fatty liver disease by promoting lipid storage in gWAT and fat malabsorption.


Asunto(s)
Tejido Adiposo/metabolismo , Hígado/enzimología , Hígado/metabolismo , Monoacilglicerol Lipasas/metabolismo , Ácido 3-Hidroxibutírico/sangre , Células 3T3-L1 , Adiponectina/sangre , Animales , Western Blotting , Células Cultivadas , Ácidos Grasos/sangre , Glicerol/sangre , Humanos , Inmunohistoquímica , Insulina/sangre , Absorción Intestinal/genética , Absorción Intestinal/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Lipólisis/genética , Lipólisis/fisiología , Ratones , Ratones Endogámicos C57BL , Monoacilglicerol Lipasas/deficiencia , Monoacilglicerol Lipasas/genética , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Triglicéridos/sangre
5.
Biochem Biophys Res Commun ; 490(1): 51-54, 2017 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-28595905

RESUMEN

Aquaporins (AQPs) are trans-membrane proteins which allow the movement of water and glycerol required by hepatic stellate cells (HSC) for triglyceride formation and lipid storage. Adiponectin (ADPQ) is a hormone produced by the adipose tissue, which is known to increase AQP3 expression. Since ADPQ receptor signals via the nuclear receptor PPAR we aimed to explore the role of this pathway in AQP3 regulation by ADPQ in HSC. AQP3 and CPT1α expression increased only after ADPQ but not rosiglitazone stimulation. In LX2 cells co-transfected with plasmids expressing PPARα or PPARγ coupled to a luciferase reporter gene, only PPARα increased luciferase activity after ADPQ stimulation. Collectively, our findings demonstrate that ADPQ increases AQP3 expression through PPARα-mediated signaling in HSC.


Asunto(s)
Adiponectina/metabolismo , Acuaporina 3/metabolismo , Células Estrelladas Hepáticas/metabolismo , PPAR gamma/metabolismo , Células Cultivadas , Humanos
6.
Sci Rep ; 7(1): 14661, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116096

RESUMEN

Aquaglyceroporins (AQPs) allow the movement of glycerol that is required for triglyceride formation in hepatic stellate cells (HSC), as key cellular source of fibrogenesis in the liver. The genetic polymorphism I148M of the patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with hepatic steatosis and its progression to steatohepatitis (NASH), fibrosis and cancer. We aimed to explore the role of AQP3 for HSC activation and unveil its potential interactions with PNPLA3. HSC were isolated from human liver, experiments were performed in primary HSC and human HSC line LX2. AQP3 was the only aquaglyceroporin present in HSC and its expression decreased during activation. The PPARγ agonist, rosiglitazone, recovered AQP3 expression also in PNPLA3 I148M carrying HSC. When PNPLA3 was silenced, AQP3 expression increased. In liver sections from patients with NASH, the decreased amount of AQP3 was proportional to the severity of fibrosis and presence of the PNPLA3 I148M variant. In PNPLA3 I148M cells, the blockade of JNK pathway upregulated AQP3 in synergism with PPARγ. In conclusion, we demonstrated profound reduction of AQP3 in HSC carrying the PNPLA3 I148M variant in parallel to decreased PPARγ activation, which could be rescued by rosiglitazone and blockade of JNK.


Asunto(s)
Acuaporina 3/metabolismo , Células Estrelladas Hepáticas/metabolismo , Lipasa/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , PPAR gamma/metabolismo , Sustitución de Aminoácidos , Línea Celular , Regulación hacia Abajo , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Lipasa/genética , Lipogénesis , Proteínas de la Membrana/genética , PPAR gamma/antagonistas & inhibidores , Rosiglitazona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA