Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 17(8): e1009799, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370798

RESUMEN

Chronic infection with HCV is manifested by dysregulation of innate immune responses and impaired T cell function at multiple levels. These changes may impact susceptibility to other infections, responsiveness to antiviral therapies, vaccine responsiveness, and development of complications such as hepatocellular carcinoma. Highly effective direct-acting antiviral (DAA) therapy has revolutionized the management of chronic HCV, with expected cure rates exceeding 95%. DAA treatment represents a unique opportunity to investigate to what extent elimination of viral replication and chronic antigen stimulation can restore immunologic phenotype. In this study we interrogated the global transcriptional profile of isolated peripheral blood T cells before, during and after IFN-free DAA therapy using single-cell mRNA sequencing. Our results demonstrate that T cells mapped at single-cell resolution have dramatic transcriptomic changes early after initiation of DAA and many of these changes are sustained after completion of DAA therapy. Specifically, we see a significant reduction in transcripts associated with innate immune activation and interferon signaling such as ISG15, ISG20, IFIT3, OAS and MX1 in many different T cell subsets. Furthermore, we find an early upregulation of a gene involved in suppression of immune activation, DUSP1, in circulating T cells. Conclusion: This study provides the first in-depth transcriptomic analysis at the single-cell level of patients undergoing DAA therapy, demonstrating that IFN-free antiviral therapy in chronic HCV infection induces hitherto unrecognized shifts in innate immune and interferon signaling within T cell populations early, during, and long-term after treatment. The present study provides a rich data source to explore the effects of DAA treatment on bulk T cells.


Asunto(s)
Antivirales/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Hepatitis C Crónica/genética , Interferones/genética , Análisis de la Célula Individual/métodos , Subgrupos de Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Biomarcadores/sangre , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Humanos , Interferones/metabolismo , Masculino , Estudios Prospectivos , Subgrupos de Linfocitos T/efectos de los fármacos
2.
J Immunol ; 201(6): 1735-1747, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30045970

RESUMEN

Lymph node (LN) expansion during an immune response is a complex process that involves the relaxation of the fibroblastic network, germinal center formation, and lymphatic vessel growth. These processes require the stromal cell network of the LN to act deliberately to accommodate the influx of immune cells to the LN. The molecular drivers of these processes are not well understood. Therefore, we asked whether the immediate cytokines type 1 IFN produced during viral infection influence the lymphatic network of the LN in mice. We found that following an IFN-inducing stimulus such as viral infection or polyI:C, programmed cell death ligand 1 (PD-L1) expression is dynamically upregulated on lymphatic endothelial cells (LECs). We found that reception of type 1 IFN by LECs is important for the upregulation of PD-L1 of mouse and human LECs and the inhibition of LEC expansion in the LN. Expression of PD-L1 by LECs is also important for the regulation of LN expansion and contraction after an IFN-inducing stimulus. We demonstrate a direct role for both type 1 IFN and PD-L1 in inhibiting LEC division and in promoting LEC survival. Together, these data reveal a novel mechanism for the coordination of type 1 IFN and PD-L1 in manipulating LEC expansion and survival during an inflammatory immune response.


Asunto(s)
Antígeno B7-H1/inmunología , Proliferación Celular , Células Endoteliales/inmunología , Endotelio Linfático/inmunología , Interferón Tipo I/inmunología , Animales , Antígeno B7-H1/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Endoteliales/patología , Endotelio Linfático/patología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Interferón Tipo I/genética , Ratones , Ratones Noqueados , Poli I-C/farmacología
4.
Eur J Immunol ; 45(11): 3140-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26179759

RESUMEN

T cells compete against each other for access to molecules on APCs in addition to peptide/MHC complexes. However, the identity of cell surface molecules that influence T-cell competition, other than peptide/MHC, have yet to be defined. Here, we identify CD70, a TNF ligand expressed on activated APCs, as an important mediator of T-cell competition for APCs. Upon engagement of CD27 by CD70, CD27 is proteolytically cleaved from the surface of the interacting CD8(+) T cell and captured by CD70 expressing dendritic cells. The capture of CD27 effectively masks CD70 on APCs, disallowing the interaction with CD27 on other competing T cells. Collectively, our data indicate that T cells compete against each other for access to the TNF-ligand CD70, an interaction that affects the duration and potency of T cell/DC interactions, thus influencing the repertoire of responding CD8(+) T cells to self or foreign antigens.


Asunto(s)
Ligando CD27/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Ligando CD27/metabolismo , Técnicas de Cocultivo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(12): E1122-31, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23447566

RESUMEN

Many vaccines include aluminum salts (alum) as adjuvants despite little knowledge of alum's functions. Host DNA rapidly coats injected alum. Here, we further investigated the mechanism of alum and DNA's adjuvant function. Our data show that DNase coinjection reduces CD4 T-cell priming by i.m. injected antigen + alum. This effect is partially replicated in mice lacking stimulator of IFN genes, a mediator of cellular responses to cytoplasmic DNA. Others have shown that DNase treatment impairs dendritic cell (DC) migration from the peritoneal cavity to the draining lymph node in mice immunized i.p. with alum. However, our data show that DNase does not affect accumulation of, or expression of costimulatory proteins on, antigen-loaded DCs in lymph nodes draining injected muscles, the site by which most human vaccines are administered. DNase does inhibit prolonged T-cell-DC conjugate formation and antigen presentation between antigen-positive DCs and antigen-specific CD4 T cells following i.m. injection. Thus, from the muscle, an immunization site that does not require host DNA to promote migration of inflammatory DCs, alum acts as an adjuvant by introducing host DNA into the cytoplasm of antigen-bearing DCs, where it engages receptors that promote MHC class II presentation and better DC-T-cell interactions.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre/farmacología , Presentación de Antígeno/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , ADN/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Animales , Antígenos/inmunología , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos
6.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464118

RESUMEN

Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1ß production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.

7.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562766

RESUMEN

Background and Aims: Chronic liver disease due to metabolic dysfunction-associated steatohepatitis (MASH) is a rapidly increasing global epidemic. MASH progression is a consequence of the complex interplay between inflammatory insults and dysregulated hepatic immune responses. T lymphocytes have been shown to accumulate in the liver during MASH, but the cause and consequence of T cell accumulation in the liver remain unclear. Our study aimed to define the phenotype and T cell receptor diversity of T cells from human cirrhotic livers and an animal model of MASH to begin resolving their function in disease. Approach and Results: In these studies, we evaluated differences in T cell phenotype in the context of liver disease we isolated liver resident T cell populations from individuals with cirrhosis and a murine model of MASH. Using both 5' single cell sequencing and flow cytometry we defined the phenotype and T cell receptor repertoire of liver resident T cells during health and disease. Conclusions: MASH-induced cirrhosis and diet-induced MASH in mice resulted in the accumulation of activated and clonally expanded T cells in the liver. The clonally expanded T cells in the liver expressed markers of chronic antigenic stimulation, including PD1 , TIGIT and TOX . Overall, this study establishes for the first time that T cells undergo antigen-dependent clonal expansion and functional differentiation during the progression of MASH. These studies could lead to the identification of potential antigenic targets that drive T cell activation, clonal expansion, and recruitment to the liver during MASH.

8.
Blood ; 118(11): 3028-38, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21813451

RESUMEN

Conjugation of TLR agonists to protein or peptide antigens has been demonstrated in many studies to be an effective vaccine formula in inducing cellular immunity. However, the molecular and cellular mediators involved in TLR-induced immune responses have not been carefully examined. In this study, we identify Type I IFN and IL-12 as critical mediators of cross-priming induced by a TLR7 agonist-antigen conjugate. We demonstrate that TLR7-driven cross-priming requires both Type I IFN and IL-12. Signaling through the IFN-αßR was required for the timely recruitment and accumulation of activated dendritic cells in the draining lymph nodes. Although IL-12 was indispensable during cross-priming, it did not regulate DC function. Therefore, the codependency for these 2 cytokines during TLR7-induced cross-priming is the result of their divergent effects on different cell-types. Furthermore, although dermal and CD8α(+) DCs were able to cross-prime CD8(+) T cells, Langerhans cells were unexpectedly found to potently cross-present antigen and support CD8(+) T-cell expansion, both in vitro and in vivo. Collectively, the data show that a TLR7 agonist-antigen conjugate elicits CD8(+) T-cell responses by the coordinated recruitment and activation of both tissue-derived and lymphoid organ-resident DC subsets through a Type I IFN and IL-12 codependent mechanism.


Asunto(s)
Presentación de Antígeno/genética , Reactividad Cruzada/genética , Células Dendríticas/inmunología , Interferón Tipo I/fisiología , Glicoproteínas de Membrana/fisiología , Receptor Toll-Like 7/fisiología , Animales , Presentación de Antígeno/inmunología , Presentación de Antígeno/fisiología , Células Cultivadas , Reactividad Cruzada/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/fisiología , Interferón Tipo I/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Receptor de Interferón alfa y beta/genética , Receptores de Interleucina-12/genética , Transducción de Señal/inmunología , Receptor Toll-Like 7/genética
9.
J Immunol ; 185(4): 2106-15, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20639485

RESUMEN

The TNF superfamily members CD70 and OX40 ligand (OX40L) were reported to be important for CD4(+) T cell expansion and differentiation. However, the relative contribution of these costimulatory signals in driving CD4(+) T cell responses has not been addressed. In this study, we found that OX40L is a more important determinant than CD70 of the primary CD4(+) T cell response to multiple immunization regimens. Despite the ability of a combined TLR and CD40 agonist (TLR/CD40) stimulus to provoke appreciable expression of CD70 and OX40L on CD8(+) dendritic cells, resulting CD4(+) T cell responses were substantially reduced by Ab blockade of OX40L and, to a lesser degree, CD70. In contrast, the CD8(+) T cell responses to combined TLR/CD40 immunization were exclusively dependent on CD70. These requirements for CD4(+) and CD8(+) T cell activation were not limited to the use of combined TLR/CD40 immunization, because vaccinia virus challenge elicited primarily OX40L-dependent CD4 responses and exclusively CD70-dependent CD8(+) T cell responses. Attenuation of CD4(+) T cell priming induced by OX40L blockade was independent of signaling through the IL-12R, but it was reduced further by coblockade of CD70. Thus, costimulation by CD70 or OX40L seems to be necessary for primary CD4(+) T cell responses to multiple forms of immunization, and each may make independent contributions to CD4(+) T cell priming.


Asunto(s)
Ligando CD27/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ligando OX40/inmunología , Animales , Antígenos CD40/genética , Antígenos CD40/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Citometría de Flujo , Inmunización/métodos , Listeria monocytogenes/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Virus Vaccinia/inmunología
10.
Front Physiol ; 13: 1021038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338478

RESUMEN

The lymphatic vasculature of the liver is vital for liver function as it maintains fluid and protein homeostasis and is important for immune cell transport to the lymph node. Chronic liver disease is associated with increased expression of inflammatory mediators including oxidized low-density lipoprotein (oxLDL). Intrahepatic levels of oxLDL are elevated in nonalcoholic fatty liver disease (NAFLD), chronic hepatitis C infection (HCV), alcohol-associated liver disease (ALD), and cholestatic liver diseases. To determine if liver lymphatic function is impaired in chronic liver diseases, in which increased oxLDL has been documented, we measured liver lymphatic function in murine models of NAFLD, ALD and primary sclerosing cholangitis (PSC). We found that Mdr2-/- (PSC), Lieber-DeCarli ethanol fed (ALD) and high fat and high cholesterol diet fed (NAFLD) mice all had a significant impairment in the ability to traffic FITC labeled dextran from the liver parenchyma to the liver draining lymph nodes. Utilizing an in vitro permeability assay, we found that oxLDL decreased the permeability of lymphatic endothelial cells (LEC)s, but not liver sinusoidal endothelial cells (LSEC)s. Here we demonstrate that LECs and LSECs differentially regulate SRC-family kinases, MAPK kinase and VE-Cadherin in response to oxLDL. Furthermore, Vascular Endothelial Growth Factor (VEGF)C or D (VEGFR-3 ligands) appear to regulate VE-Cadherin expression as well as decrease cellular permeability of LECs in vitro and in vivo after oxLDL treatment. These findings suggest that oxLDL acts to impede protein transport through the lymphatics through tightening of the cell-cell junctions. Importantly, engagement of VEGFR-3 by its ligands prevents VE-Cadherin upregulation and improves lymphatic permeability. These studies provide a potential therapeutic target to restore liver lymphatic function and improve liver function.

11.
Alcohol ; 99: 35-48, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34923085

RESUMEN

Alcohol consumption remains a leading cause of liver disease worldwide, resulting in a complex array of hepatic pathologies, including steatosis, steatohepatitis, and cirrhosis. Individuals who progress to a rarer form of alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), require immediate life-saving intervention in the form of liver transplantation. Rapid onset of AH is poorly understood and the metabolic mechanisms contributing to the progression to liver failure remain undetermined. While multiple mechanisms have been identified that contribute to ALD, no cures exist and mortality from AH remains high. To identify novel pathways associated with AH, our group utilized proteomics to investigate AH-specific biomarkers in liver explant tissues. The goal of the present study was to determine changes in the proteome as well as epigenetic changes occurring in AH. Protein abundance and acetylomic analyses were performed utilizing nHPLC-MS/MS, revealing significant changes to proteins associated with metabolic and inflammatory fibrosis pathways. Here, we describe a novel hepatic and serum biomarker of AH, glycoprotein NMB (GPNMB). The anti-inflammatory protein GPNMB was significantly increased in AH explant liver and serum compared to healthy donors by 50-fold and 6.5-fold, respectively. Further, bioinformatics analyses identified an AH-dependent decrease in protein abundance across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. The greatest increases in protein abundance were observed in pathways for focal adhesion, lysosome, phagosome, and actin cytoskeleton. In contrast with the hyperacetylation observed in murine models of ALD, protein acetylation was decreased in AH compared to normal liver across fatty acid degradation, biosynthesis of amino acids, and carbon metabolism. Interestingly, immunoblot analysis found epigenetic marks were significantly increased in AH explants, including Histone H3K9 and H2BK5 acetylation. The increased acetylation of histones likely plays a role in the altered proteomic profile observed, including increases in GPNMB. Indeed, our results reveal that the AH proteome is dramatically impacted through unanticipated and unknown mechanisms. Understanding the origin and consequences of these changes will yield new mechanistic insight for ALD as well as identify novel hepatic and serum biomarkers, such as GPNMB.


Asunto(s)
Hepatitis Alcohólica , Proteómica , Animales , Biomarcadores/metabolismo , Proteínas del Ojo/metabolismo , Glicoproteínas/metabolismo , Humanos , Hígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Espectrometría de Masas en Tándem
12.
Front Immunol ; 12: 661323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531850

RESUMEN

Tumors evade the immune system by inducing inflammation. In melanoma, tumor-derived IL-1ß drives inflammation and the expansion of highly immunosuppressive myeloid-derived suppressor cells (MDSCs). Similar in many tumors, melanoma is also linked to the downstream IL-6/STAT3 axis. In this study, we observed that both recombinant and tumor-derived IL-1ß specifically induce pSTAT3(Y705), creating a tumor-autoinflammatory loop, which amplifies IL-6 signaling in the human melanoma cell line 1205Lu. To disrupt IL-1ß/IL-6/STAT3 axis, we suppressed IL-1ß-mediated inflammation by inhibiting the NOD-like receptor protein 3 (NLRP3) using OLT1177, a safe-in-humans specific NLRP3 oral inhibitor. In vivo, using B16F10 melanoma, OLT1177 effectively reduced tumor progression (p< 0.01); in primary tumors, OLT1177 decreased pSTAT3(Y705) by 82% (p<0.01) and II6 expression by 53% (p<0.05). Disruption of tumor-derived NLRP3, either pharmacologically or genetically, reduced STAT3 signaling in bone marrow cells. In PMN-MDSCs isolated from tumor-bearing mice treated with OLT1177, we observed significant reductions in immunosuppressive genes such as Pdcd1l1, Arg1, Il10 and Tgfb1. In conclusion, the data presented here show that the inhibition of NLRP3 reduces IL-1ß induction of pSTAT3(Y705) preventing expression of immunosuppressive genes as well as activity in PMN-MDSCs.


Asunto(s)
Interleucina-1beta/inmunología , Interleucina-6/inmunología , Melanoma/inmunología , Células Supresoras de Origen Mieloide/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Factor de Transcripción STAT3/inmunología , Animales , Línea Celular Tumoral , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Melanoma/metabolismo , Melanoma/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Inmunológicos , Células Supresoras de Origen Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nitrilos/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
13.
Elife ; 102021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843587

RESUMEN

The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.


The lymphatic system is a network of ducts that transports fluid, proteins, and immune cells from different organs around the body. Lymph nodes provide pit stops at hundreds of points along this network where immune cells reside, and lymph fluid can be filtered and cleaned. When pathogens, such as viruses or bacteria, enter the body during an infection, fragments of their proteins can get swept into the lymph nodes. These pathogenic proteins or protein fragments activate resident immune cells and kickstart the immune response. Vaccines are designed to mimic this process by introducing isolated pathogenic proteins in a controlled way to stimulate similar immune reactions in lymph nodes. Once an infection has been cleared by the immune system, or a vaccination has triggered the immune system, most pathogenic proteins get cleared away. However, a small number of pathogenic proteins remain in the lymph nodes to enable immune cells to respond more strongly and quickly the next time they see the same pathogen. Yet it is largely unclear how much protein remains for training and how or where it is all stored. Current techniques are not sensitive or long-lived enough to accurately detect and track these small protein deposits over time. Walsh, Sheridan, Lucas, et al. have addressed this problem by developing biological tags that can be attached to the pathogenic proteins so they can be traced. These tags were designed so the body cannot easily break them down, helping them last as long as the proteins they are attached to. Walsh, Sheridan, Lucas et al. tested whether vaccinating mice with the tagged proteins allowed the proteins to be tracked. The method they used was designed to identify individual cell types based on their genetic information along with the tag. This allowed them to accurately map the complex network of cells involved in storing and retrieving archived protein fragments, as well as those involved in training new immune cells to recognize them. These results provide important insights into the protein archiving system that is involved in enhancing immune memory. This may help guide the development of new vaccination strategies that can manipulate how proteins are archived to establish more durable immune protection. The biological tags developed could also be used to track therapeutic proteins, allowing scientists to determine how long cancer drugs, antibody therapies or COVID19 anti-viral agents remain in the body. This information could then be used by doctors to plan specific and personalized treatment timetables for patients.


Asunto(s)
Antígenos/metabolismo , Ganglios Linfáticos/metabolismo , Análisis de la Célula Individual , Animales , Presentación de Antígeno , Antígenos/genética , Antígenos/inmunología , Caveolas/inmunología , Caveolas/metabolismo , Células Cultivadas , ADN/genética , ADN/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endocitosis , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Ganglios Linfáticos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/genética , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Oligonucleótidos Fosforotioatos/genética , Oligonucleótidos Fosforotioatos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Factores de Tiempo , Distribución Tisular , Transcriptoma
14.
Cell Mol Gastroenterol Hepatol ; 11(2): 573-595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32961356

RESUMEN

BACKGROUND AND AIMS: As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS: To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS: Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS: We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.


Asunto(s)
Lipoproteínas LDL/metabolismo , Hígado/patología , Vasos Linfáticos/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Uniones Intercelulares/patología , Hígado/inmunología , Vasos Linfáticos/citología , Vasos Linfáticos/inmunología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Permeabilidad , Proteostasis/genética , Proteostasis/inmunología , RNA-Seq , Análisis de la Célula Individual , Proteínas Supresoras de Tumor/metabolismo
15.
J Immunother Cancer ; 9(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33883256

RESUMEN

BACKGROUND: Numerous trials combining radiation therapy (RT) and immunotherapy in head and neck squamous cell carcinoma (HNSCC) are failing. Using preclinical immune cold models of HNSCC resistant to RT-immune checkpoint inhibitors, we investigate therapeutic approaches of overcoming such resistance by examining the differential microenvironmental response to RT. METHODS: We subjected two HPV-negative orthotopic mouse models of HNSCC to combination RT, regulatory T cells (Treg) depletion, and/or CD137 agonism. Tumor growth was measured and intratumorous and lymph node immune populations were compared among treatment groups. Human gene sets, genetically engineered mouse models DEREG and BATF3-/-, flow and time-of-flight cytometry, RNA-Seq, Treg adoptive transfer studies, and in vitro experiments were used to further evaluate the role of dendritic cells (DCs) and Tregs in these treatments. RESULTS: In MOC2 orthotopic tumors, we find no therapeutic benefit to targeting classically defined immunosuppressive myeloids, which increase with RT. In these radioresistant tumors, supplementing combination RT and Treg depletion with anti-CD137 agonism stimulates CD103+ DC activation in tumor-draining lymph nodes as characterized by increases in CD80+ and CCR7+ DCs, resulting in a CD8 T cell-dependent response. Simultaneously, Tregs are reprogrammed to an effector phenotype demonstrated by increases in interferonγ+, tumor necrosis factorα+, PI3K+, pAKT+ and Eomes+ populations as well as decreases in CTLA4+ and NRP-1+ populations. Tumor eradication is observed when RT is increased to an 8 Gy x 5 hypofractionated regimen and combined with anti-CD25+ anti-CD137 treatment. In a human gene set from oral squamous cell carcinoma tumors, high Treg number is associated with earlier recurrence. CONCLUSIONS: Regulating Treg functionality and DC activation status within the lymph node is critical for generating a T cell effector response in these highly radioresistant tumors. These findings underscore the plasticity of Tregs and represent a new therapeutic opportunity for reprogramming the tumor microenvironment in HNSCCs resistant to conventional radioimmunotherapy approaches.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Células Dendríticas/efectos de los fármacos , Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Hipofraccionamiento de la Dosis de Radiación , Tolerancia a Radiación , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Linfocitos T Reguladores/efectos de los fármacos , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Línea Celular Tumoral , Terapia Combinada , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Subunidad alfa del Receptor de Interleucina-2/antagonistas & inhibidores , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Depleción Linfocítica , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Carga Tumoral , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
16.
J Immunol ; 181(5): 3285-90, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18714000

RESUMEN

Common gamma chain (gammac)-receptor dependent cytokines are required for regulatory T cell (Treg) development as gammac(-/-) mice lack Tregs. However, it is unclear which gammac-dependent cytokines are involved in this process. Furthermore, thymic stromal lymphopoietin (TSLP) has also been suggested to play a role in Treg development. In this study, we demonstrate that developing CD4(+)Foxp3(+) Tregs in the thymus express the IL-2Rbeta, IL-4Ralpha, IL-7Ralpha, IL-15Ralpha, and IL-21Ralpha chains, but not the IL9Ralpha or TSLPRalpha chains. Moreover, only IL-2, and to a much lesser degree IL-7 and IL-15, were capable of transducing signals in CD4(+)Foxp3(+) Tregs as determined by monitoring STAT5 phosphorylation. Likewise, IL-2, IL-7, and IL-15, but not TSLP, were capable of inducing the conversion of CD4(+)CD25(+)Foxp3(-) thymic Treg progenitors into CD4(+)Foxp3(+) mature Tregs in vitro. To examine this issue in more detail, we generated IL-2Rbeta(-/-) x IL-7Ralpha(-/-) and IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice. We found that IL-2Rbeta(-/-) x IL-7Ralpha(-/-) mice were devoid of Tregs thereby recapitulating the phenotype observed in gammac(-/-) mice; in contrast, the phenotype observed in IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice was comparable to that seen in IL-2Rbeta(-/-) mice. Finally, we observed that Tregs from both IL-2(-/-) and IL-2Rbeta(-/-) mice show elevated expression of IL-7Ralpha and IL-15Ralpha chains. Addition of IL-2 to Tregs from IL-2(-/-) mice led to rapid down-regulation of these receptors. Taken together, our results demonstrate that IL-2 plays the predominant role in Treg development, but that in its absence the IL-7Ralpha and IL-15Ralpha chains are up-regulated and allow for IL-7 and IL-15 to partially compensate for loss of IL-2.


Asunto(s)
Interleucinas/inmunología , Linfopoyesis , Linfocitos T Reguladores/citología , Animales , Diferenciación Celular , Citocinas , Interleucina-15 , Interleucina-2 , Interleucina-7 , Ratones , Ratones Noqueados , Transducción de Señal/inmunología , Linfopoyetina del Estroma Tímico
17.
Cell Rep ; 33(2): 108258, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053342

RESUMEN

Although the function of the extracellular region of programmed death ligand 1 (PD-L1) through its interactions with PD-1 on T cells is well studied, little is understood regarding the intracellular domain of PD-L1. Here, we outline a major role for PD-L1 intracellular signaling in the control of dendritic cell (DC) migration from the skin to the draining lymph node (dLN). Using a mutant mouse model, we identify a TSS signaling motif within the intracellular domain of PD-L1. The TSS motif proves critical for chemokine-mediated DC migration to the dLN during inflammation. This loss of DC migration, in the PD-L1 TSS mutant, leads to a significant decline in T cell priming when DC trafficking is required for antigen delivery to the dLN. Finally, the TSS motif is required for chemokine receptor signaling downstream of the Gα subunit of the heterotrimeric G protein complex, ERK phosphorylation, and actin polymerization in DCs.


Asunto(s)
Antígeno B7-H1/metabolismo , Movimiento Celular , Células Dendríticas/metabolismo , Dermis/citología , Inmunidad , Transducción de Señal , Actinas/metabolismo , Aminoácidos/genética , Animales , Antígeno B7-H1/química , Antígeno B7-H1/deficiencia , Secuencia de Bases , Linfocitos T CD8-positivos/inmunología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Quimiocina CCL21/farmacología , Quimiotaxis/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Exones/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP/metabolismo , Inmunidad/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Fosforilación/efectos de los fármacos , Poli I-C/farmacología , Polimerizacion , Dominios Proteicos , Receptores CCR7/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Cell Rep ; 33(7): 108407, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207208

RESUMEN

Individuals with Down syndrome (DS; trisomy 21) display hyperactivation of interferon (IFN) signaling and chronic inflammation, which could potentially be explained by the extra copy of four IFN receptor (IFNR) genes encoded on chromosome 21. However, the clinical effects of IFN hyperactivity in DS remain undefined. Here, we report that a commonly used mouse model of DS overexpresses IFNR genes and shows hypersensitivity to IFN ligands in diverse immune cell types. When treated repeatedly with a TLR3 agonist to induce chronic inflammation, these animals overexpress key IFN-stimulated genes, induce cytokine production, exhibit liver pathology, and undergo rapid weight loss. Importantly, the lethal immune hypersensitivity and cytokine production and the ensuing pathology are ameliorated by JAK1 inhibition. These results indicate that individuals with DS may experience harmful hyperinflammation upon IFN-inducing immune stimuli, as observed during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, pointing to JAK1 inhibition as a strategy to restore immune homeostasis in DS.


Asunto(s)
Azetidinas/uso terapéutico , Síndrome de Down/inmunología , Hipersensibilidad/tratamiento farmacológico , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/uso terapéutico , Animales , Síndrome de Down/complicaciones , Femenino , Hipersensibilidad/etiología , Hipersensibilidad/inmunología , Inmunidad Innata , Interferón-alfa/metabolismo , Hígado/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Purinas , Pirazoles , Receptores Toll-Like/metabolismo
19.
Front Physiol ; 10: 1579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31992991

RESUMEN

Chronic liver disease (CLD) is a global health epidemic causing ∼2 million deaths annually worldwide. As the incidence of CLD is expected to rise over the next decade, understanding the cellular and molecular mediators of CLD is critical for developing novel therapeutics. Common characteristics of CLD include steatosis, inflammation, and cholesterol accumulation in the liver. While the lymphatic system in the liver has largely been overlooked, the liver lymphatics, as in other organs, are thought to play a critical role in maintaining normal hepatic function by assisting in the removal of protein, cholesterol, and immune infiltrate. Lymphatic growth, permeability, and/or hyperplasia in non-liver organs has been demonstrated to be caused by obesity or hypercholesterolemia in humans and animal models. While it is still unclear if changes in permeability occur in liver lymphatics, the lymphatics do expand in number and size in all disease etiologies tested. This is consistent with the lymphatic endothelial cells (LEC) upregulating proliferation specific genes, however, other transcriptional changes occur in liver LECs that are dependent on the inflammatory mediators that are specific to the disease etiology. Whether these changes induce lymphatic dysfunction or if they impact liver function has yet to be directly addressed. Here, we will review what is known about liver lymphatics in health and disease, what can be learned from recent work on the influence of obesity and hypercholesterolemia on the lymphatics in other organs, changes that occur in LECs in the liver during disease and outstanding questions in the field.

20.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663671

RESUMEN

Within the liver, lymphatic vessels are found within the portal triad, and their described function is to remove interstitial fluid from the liver to the lymph nodes where cellular debris and antigens can be surveyed. We are very interested in understanding how the lymphatic vasculature might be involved in inflammation and immune cell function within the liver. However, very little has been published establishing digestion protocols for the isolation of lymphatic endothelial cells (LECs) from the liver or specific markers that can be used to evaluate liver LECs on a per cell basis. Therefore, we optimized a method for the digestion and staining of the liver in order to evaluate the LEC population in the liver. We are confident that the method outlined here will be useful for the identification and isolation of LECs from the liver and will strengthen our understanding of how LECs respond to the liver microenvironment.


Asunto(s)
Biomarcadores/metabolismo , Células Endoteliales/patología , Citometría de Flujo/métodos , Hígado/patología , Vasos Linfáticos/fisiopatología , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA