Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(43): 26822-26832, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33033227

RESUMEN

The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.


Asunto(s)
Señalización del Calcio , Glándulas Mamarias Animales/fisiología , Eyección Láctea , Animales , Células Epiteliales/fisiología , Humanos , Microscopía Intravital , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos , Cadenas Ligeras de Miosina/metabolismo
2.
J Struct Biol ; 214(4): 107899, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208858

RESUMEN

To investigate age and site-related changes to human dentin collagen, sound human teeth collected from donors aged 13-29 (young) and 50-74 (aged) years (n = 9/group) were cut to shallow and deep sites. Dentin collagen orientation and fibril bundling was investigated using the Picrosirius Red (PSR) stain observed under cross-polarized light microscopy (Pol), and collagen distribution was investigated using Confocal Laser Scanning Microscopy (CLSM). Collagen types III to I distribution in peritubular dentin (PTD) was revealed using Herovici stain and brightfield microscopy. Image analysis software and linear mixed modelling quantified outcomes. In situ dentin collagen was observed using Xenon Plasma Focussed Ion Beam Scanning Electron Microscopy (Xe PFIB-SEM). The PSR-Pol analysis revealed less coherently aligned and more bundled collagen fibrils in aged dentin (P = 0.005). Deep inner dentin collagen in both groups were less coherently aligned with reduced bundling. Regardless of age, CLSM showed collagen distribution remained stable; and more collagen type III was detectable in PTD located in inner dentin (Young: P = 0.006; Aged: P = 0.008). Observations following Xe PFIB-SEM cross-sectioning showed apatite-like deposits surrounding large intratubular collagen fibers, and evidence of smaller intertubular dentin collagen fibrils in situ. In conclusion, aging changes collagen network architecture, but not distribution or content.


Asunto(s)
Colágeno Tipo I , Microscopía , Humanos , Dentina
3.
Opt Express ; 30(5): 6746-6754, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299453

RESUMEN

In this paper, we report a Raman laser which is extremely sensitive to a variation of the cavity length, using a scheme employing two stable isotopes of Rb. One isotope is used for producing a broad gain spectrum via the optically pumped Raman gain process, while the other is used for producing a narrow dip via the optically pumped Raman depletion process. By tuning the frequencies of the two Raman pumps, the center frequencies of the gain and dip can be aligned to the same frequency. This approach allows tuning of the gain and dip parameters independently over a broad range of operating conditions. With such a configuration, we can produce a negative dispersion around the two-photon resonance frequency in the vapor cell, which leads to a group index that is close to zero. By theoretically matching the experimental observations, we can infer that the sensitivity of such laser is enhanced by a factor of more than 2800, which is nearly a factor of three larger than the highest value reported previously using a different approach.

4.
Cell Mol Life Sci ; 79(1): 38, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971427

RESUMEN

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two ß-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Proteínas de Unión al ADN/farmacología , Péptidos Cíclicos/farmacología , Animales , Células de la Médula Ósea , Membrana Celular/efectos de los fármacos , Células Cultivadas , Eritrocitos , Cangrejos Herradura/metabolismo , Humanos , Ratones Endogámicos C57BL , Cultivo Primario de Células
5.
Proc Natl Acad Sci U S A ; 116(13): 6341-6350, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846555

RESUMEN

Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/inmunología , Escherichia coli Uropatógena/metabolismo , Zinc/toxicidad , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/genética , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Factores de Transcripción/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética
6.
BMC Bioinformatics ; 22(1): 410, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34412593

RESUMEN

BACKGROUND: With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrogating these datasets. The surfaces of vertebrate cells can rapidly deform to create projections that interact with the microenvironment. Such surface projections include spike-like filopodia and wave-like ruffles on the surface of macrophages as they engage in immune surveillance. LLSM imaging has provided new insights into the complex surface behaviours of immune cells, including revealing new types of ruffles. However, full use of these data requires systematic and quantitative analysis of thousands of projections over hundreds of time steps, and an effective system for analysis of individual structures at this scale requires efficient and robust methods with minimal user intervention. RESULTS: We present LLAMA, a platform to enable systematic analysis of terabyte-scale 4D microscopy datasets. We use a machine learning method for semantic segmentation, followed by a robust and configurable object separation and tracking algorithm, generating detailed object level statistics. Our system is designed to run on high-performance computing to achieve high throughput, with outputs suitable for visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: we provide a specialised tool which supports interactive quality control, optimisation, and output visualisation processes to complement the processing pipeline. LLAMA is demonstrated in an analysis of macrophage surface projections, in which it is used to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies. CONCLUSIONS: LLAMA provides an effective open source tool for running a cell microscopy analysis pipeline based on semantic segmentation, object analysis and tracking. Detailed numerical and visual outputs enable effective statistical analysis, identifying distinct patterns of increased activity under the two interventions considered in our example analysis. Our system provides the capacity to screen large datasets for specific structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like ruffling and filopodia deployment.


Asunto(s)
Microscopía , Seudópodos , Algoritmos , Aprendizaje Automático , Macrófagos
7.
J Biol Chem ; 295(32): 10911-10925, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414842

RESUMEN

Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ciclotidas/farmacología , Descubrimiento de Drogas , Plantas Medicinales/química , Violaceae/química , Secuencia de Aminoácidos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Ciclotidas/química , Ciclotidas/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem
8.
Fungal Genet Biol ; 138: 103365, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32145317

RESUMEN

Green fluorescent protein (GFP) and its counterparts are modern molecular biology research tools indispensable in many experimental systems. Within fungi, researchers studying Saccharomyces cerevisiae and other model ascomycetes have access to a wide variety of fluorescent proteins. Unfortunately, many of these tools have not crossed the phylum divide into the Basidiomycota, where only GFP S65T, Venus, Ds-Red, and mCherry are currently available. To address this, we searched the literature for potential candidates to be expressed in the human fungal pathogen Cryptococcus neoformans and identified a suite of eight more modern fluorescent proteins that span the visible spectrum. A single copy of each fluorophore was heterologously expressed in Safe Haven 1 and their fluorescence intensities compared in this encapsulated yeast. mTurquoise2, mTFP1, Clover, mNeonGreen, mRuby3, and Citrine were highly visible under the microscope, whereas Superfolder GFP and mMaroon1 were not. Expressed fluorophores did not impact growth or virulence as demonstrated by an in vitro spotting assay and murine inhalation model, respectively.


Asunto(s)
Cryptococcus neoformans , Colorantes Fluorescentes , Animales , Criptococosis/diagnóstico por imagen , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/farmacología , Proteínas Fúngicas/genética , Expresión Génica , Genes Fúngicos , Humanos , Ratones , Microscopía Fluorescente/métodos , Biología Molecular/métodos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/farmacología , Virulencia/efectos de los fármacos
9.
J Anim Ecol ; 89(7): 1735-1746, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32227334

RESUMEN

Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.


Asunto(s)
Ecosistema , Peces , Aclimatación , Animales , Conducta Predatoria , Estaciones del Año , Temperatura
10.
Appl Opt ; 59(3): 866-872, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225219

RESUMEN

In this paper, we experimentally demonstrate a strong correlation between the frequencies of the Raman pump and the Raman probe inside an optically pumped Raman laser. We show that the correlation is due to rapid adjustment of the phase of the dipoles that produce the Raman gain, following a sudden jump in the phase of the Raman pump. A detailed numerical model validates this interpretation of the phase correlation. The width of the spectrum of the beat between the Raman pump and the Raman laser is significantly narrowed due to this correlation. As a result, the minimum measurable change in the cavity length, for a given linewidth of the Raman pump laser, is substantially reduced. Therefore, this finding is expected to enhance the sensitivity of such a laser in various metrological applications (e.g., accelerometry).

11.
Traffic ; 17(9): 1014-26, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27219021

RESUMEN

Macrophages are activated by contact with pathogens to mount innate immune defenses against infection. Toll-like receptor 4 (TLR4) at the macrophage surface recognizes and binds bacterial lipopolysaccharide (LPS), setting off signaling and transcriptional events that lead to the secretion of pro- and anti-inflammatory cytokines; these in turn control inflammatory and antimicrobial responses. Although the complex regulatory pathways downstream of TLR4 have been extensively studied, further molecules critical for modulating the resulting cytokine outputs remain to be characterized. Here we establish potential roles for APPL1 and 2 signaling adaptors as regulators of LPS/TLR4-induced signaling, transcription, and cytokine secretion. APPL1 and 2 are differentially localized to distinct signaling-competent membrane domains on the surface and in endocytic compartments of LPS-activated macrophages. By depleting cells of each adaptor respectively we show separate and opposing functions for APPL1 and 2 in Akt and MAPK signaling. Specifically, APPL2 has a dominant role in nuclear translocation of NF-KB p65 and it serves to constrain the secretion of pro- and anti-inflammatory cytokines. The APPLs, and in particular APPL2, are thus revealed as adaptors with important capacity to modulate inflammatory responses mounted by LPS/TLR4 during infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Citocinas/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Citocinas/metabolismo , Inmunidad Innata , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Transfección
12.
J Biol Chem ; 292(11): 4411-4422, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28130450

RESUMEN

LPS-mediated activation of Toll-like receptor 4 (TLR4) in macrophages results in the coordinated release of proinflammatory cytokines, followed by regulatory mediators, to ensure that this potentially destructive pathway is tightly regulated. We showed previously that Rab8a recruits PI3Kγ for Akt-dependent signaling during TLR4 activation to limit the production of the proinflammatory cytokines IL-6 and IL-12p40 while enhancing the release of the regulatory/anti-inflammatory cytokine IL-10. Here we broaden the array of immune receptors controlled by Rab8a-PI3Kγ and further define the Rab-mediated membrane domains required for signaling. With CRISPR/Cas9-mediated gene editing to stably knock out and recover Rab8a in macrophage cell lines, we match Akt signaling profiles with cytokine outputs, confirming that Rab8a is a novel regulator of the Akt/mammalian target of rapamycin (mTOR) pathway downstream of multiple TLRs. Upon developing a Rab8a activation assay, we show that TLR3 and 9 agonists also activate Rab8a. Live-cell imaging reveals that Rab8a is first recruited to the plasma membrane and dorsal ruffles, but it is retained during collapse of ruffles to form macropinosomes enriched for phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), suggesting that the macropinosome is the location where Rab8a is active. We pinpoint macropinosomes as the sites for Rab8-mediated biasing of inflammatory signaling responses via inducible production of anti-inflammatory cytokines. Thus, Rab8a and PI3Kγ are positioned in multiple TLR pathways, and this signaling axis may serve as a pharmacologically tractable target during infection and inflammation.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Citocinas/inmunología , Macrófagos/inmunología , Receptores Toll-Like/inmunología , Proteínas de Unión al GTP rab/inmunología , Animales , Células Cultivadas , Femenino , Humanos , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatos de Fosfatidilinositol/análisis , Fosfatos de Fosfatidilinositol/inmunología , Células RAW 264.7 , Transducción de Señal , Receptores Toll-Like/análisis , Proteínas de Unión al GTP rab/análisis
13.
Opt Express ; 25(24): 30327-30335, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221062

RESUMEN

We have demonstrated a laser in which the frequency shift due to small cavity fluctuations is far less than what would be expected from a conventional laser. The factor of sensitivity suppression is inferred to be equal to the effective group index experienced by the laser, implying that this laser is subluminal. We have observed a suppression factor as high as 663. Such a laser is highly self-stabilized compared to a conventional laser, and is expected to have a far smaller Schawlow-Townes linewidth. As a result, this laser may have potentially significant applications in the fields of high-precision optical metrology and passive frequency stabilization.

14.
J Theor Biol ; 358: 102-21, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24882792

RESUMEN

A key problem in the biological sciences is to be able to reliably estimate model parameters from experimental data. This is the well-known problem of parameter identifiability. Here, methods are developed for biologists and other modelers to design optimal experiments to ensure parameter identifiability at a structural level. The main results of the paper are to provide a general methodology for extracting parameters of linear models from an experimentally measured scalar function - the transfer function - and a framework for the identifiability analysis of complex model structures using linked models. Linked models are composed by letting the output of one model become the input to another model which is then experimentally measured. The linked model framework is shown to be applicable to designing experiments to identify the measured sub-model and recover the input from the unmeasured sub-model, even in cases that the unmeasured sub-model is not identifiable. Applications for a set of common model features are demonstrated, and the results combined in an example application to a real-world experimental system. These applications emphasize the insight into answering "where to measure" and "which experimental scheme" questions provided by both the parameter extraction methodology and the linked model framework. The aim is to demonstrate the tools' usefulness in guiding experimental design to maximize parameter information obtained, based on the model structure.


Asunto(s)
Modelos Lineales , Modelos Biológicos
15.
Evol Ecol ; 38(3): 387-397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946730

RESUMEN

Animal and plant colouration presents a striking dimension of phenotypic variation, the study of which has driven general advances in ecology, evolution, and animal behaviour. Quantitative Colour Pattern Analysis (QCPA) is a dynamic framework for analysing colour patterns through the eyes of non-human observers. However, its extensive array of user-defined image processing and analysis tools means image analysis is often time-consuming. This hinders the full use of analytical power provided by QCPA and its application to large datasets. Here, we offer a robust and comprehensive batch script, allowing users to automate many QCPA workflows. We also provide a complimentary set of useful R scripts for downstream data extraction and analysis. The presented batch processing extension will empower users to further utilise the analytical power of QCPA and facilitate the development of customised semi-automated workflows. Such quantitatively scaled workflows are crucial for exploring colour pattern spaces and developing ever-richer frameworks for analysing organismal colouration accounting for visual perception in animals other than humans. These advances will, in turn, facilitate testing hypotheses on the function and evolution of vision and signals at quantitative and qualitative scales, which are otherwise computationally unfeasible. Supplementary Information: The online version contains supplementary material available at 10.1007/s10682-024-10291-7.

16.
ACS Omega ; 8(32): 29789-29793, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599948

RESUMEN

In nuclear reactors that use molten fluoride salts, either as coolants or as the medium for the fuel, the purity of the salts is critical for controlling salt chemistry and mitigating corrosion. Water is a particularly important contaminant in this regard, as it participates in a number of important corrosion reactions, so the careful measurement of oxygen, which is principally present in the salts due to water contamination, is a critical step in salt characterization. Here, we present an analytical method for quantifying oxygen contamination in Li2BeF4 (FLiBe), a technologically important and suitably representative fluoride salt, with a detection limit of 22 µg of oxygen, or 110 ppm in a 200 mg sample. To test the method, four FLiBe samples from different batches were tested. Two of these showed oxygen concentrations below the method detection limit, while two showed concentrations above it. In particular, the difference in the oxygen concentration between purified and un-purified batches of material from Kairos Power showed the efficacy of this method in characterizing the degree of oxygen removal obtained from purification methods.

17.
J Innate Immun ; 15(1): 468-484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36882040

RESUMEN

Complement activation and Rab GTPase trafficking are commonly observed in inflammatory responses. Recruitment of innate immune cells to sites of infection or injury and secretion of inflammatory chemokines are promoted by complement component 5a (C5a) that activates the cell surface protein C5a receptor1 (C5aR1). Persistent activation can lead to a myriad of inflammatory and autoimmune diseases. Here, we demonstrate that the mechanism of C5a induced chemotaxis of human monocyte-derived macrophages (HMDMs) and their secretion of inflammatory chemokines are controlled by Rab5a. We find that C5a activation of the G protein coupled receptor C5aR1 expressed on the surface of HMDMs, recruits ß-arrestin2 via Rab5a trafficking, then activates downstream phosphatidylinositol 3-kinase (PI3K)/Akt signaling that culminates in chemotaxis and secretion of pro-inflammatory chemokines from HMDMs. High-resolution lattice light-sheet microscopy on live cells showed that C5a activates C5aR1-GFP internalization and colocalization with Rab5a-tdTomato but not with dominant negative mutant Rab5a-S34N-tdTomato in HEK293 cells. We found that Rab5a is significantly upregulated in differentiated HMDMs and internalization of C5aR1 is dependent on Rab5a. Interestingly, while knockdown of Rab5a inhibited C5aR1-mediated Akt phosphorylation, it did not affect C5aR1-mediated ERK1/2 phosphorylation or intracellular calcium mobilization in HMDMs. Functional analysis using transwell migration and µ-slide chemotaxis assays indicated that Rab5a regulates C5a-induced chemotaxis of HMDMs. Further, C5aR1 was found to mediate interaction of Rab5a with ß-arrestin2 but not with G proteins in HMDMs. Furthermore, C5a-induced secretion of pro-inflammatory chemokines (CCL2, CCL3) from HMDMs was attenuated by Rab5a or ß-arrestin2 knockdown or by pharmacological inhibition with a C5aR1 antagonist or a PI3K inhibitor. These findings reveal a C5a-C5aR1-ß-arrestin2-Rab5a-PI3K signaling pathway that regulates chemotaxis and pro-inflammatory chemokine secretion in HMDMs and suggests new ways of selectively modulating C5a-induced inflammatory outputs.


Asunto(s)
Quimiocinas , Quimiotaxis , Macrófagos , Receptor de Anafilatoxina C5a , Proteínas de Unión al GTP rab5 , Humanos , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Complemento C5a/metabolismo , Células HEK293 , Macrófagos/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab5/metabolismo , Receptor de Anafilatoxina C5a/metabolismo
18.
Methods Mol Biol ; 2523: 281-301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35759204

RESUMEN

Mitochondria have co-evolved with eukaryotic cells for more than a billion years, becoming an important cog in their machinery. They are best known for being tasked with energy generation through the production of adenosine triphosphate, but they also have roles in several other cellular processes, for example, immune and inflammatory responses. Mitochondria have important functions in macrophages, key innate immune cells that detect pathogens and drive inflammation. Mitochondrial activity is influenced by the highly dynamic nature of the mitochondrial network, which alternates between interconnected tubular and fragmented forms. The dynamic balance between this interconnected fused network and fission-mediated mitochondrial fragmentation modulates inflammatory responses such as production of cytokines and mitochondrial reactive oxygen species. Here we describe methods to differentiate mouse bone marrow cells into macrophages and the use of light microscopy, electron microscopy, flow cytometry, and Western blotting to quantify regulated mitochondrial dynamics in these differentiated macrophages.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Animales , Dinaminas , Macrófagos , Ratones , Mitocondrias/fisiología , Proteínas Mitocondriales , Especies Reactivas de Oxígeno
19.
J Struct Biol X ; 6: 100060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35146411

RESUMEN

OBJECTIVE: To determine the effect of patient age (young or mature), anatomical location (shallow/deep and central/peripheral) and microscopic site (intertubular/peritubular) on dentine mineral density, distribution and composition. METHODS: Extracted posterior teeth from young (aged 19-20 years, N = 4) and mature (aged 54-77 years, N = 4) subjects were prepared to shallow and deep slices. The dentine surface elemental composition was investigated in a SEM using Backscattered Electron (BSE) micrographs, Energy Dispersive X-ray Spectroscopy, and Integrated Mineral Analysis. Qualitative comparisons and quantitative measures using machine learning were used to analyse the BSE images. Quantitative outcomes were compared using quantile or linear regression models with bootstrapping to account for the multiple measures per sample. Subsequently, a Xenon Plasma Focussed Ion Beam Scanning Electron Microscopy (Xe PFIB-SEM) was used to mill large area (100 µm) cross-sections to investigate morphology through the dentine tubules using high resolution secondary electron micrographs. RESULTS: With age, dentine mineral composition remains stable, but density changes with anatomical location and microscopic site. Microscopically, accessory tubules spread into intertubular dentine (ITD) from the main tubule lumens. Within the lumens, mineral deposits form calcospherites in the young that eventually coalesce in mature tubules and branches. The mineral occlusion in mature dentine increases overall ITD density to reflect peritubular dentine (PTD) infiltrate. The ITD observed in micrographs remained consistent for age and observation plane to suggest tubule deposition affects overall dentine density. Mineral density depends on the relative distribution of PTD to ITD that varies with anatomical location. SIGNIFICANCE: Adhesive materials may interact differently within a tooth as well as in different age groups.

20.
Cell Rep ; 38(5): 110296, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108536

RESUMEN

Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.


Asunto(s)
Anticuerpos Anti-VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Polisacáridos/metabolismo , Internalización del Virus/efectos de los fármacos , Anticuerpos Neutralizantes/metabolismo , Membrana Celular/metabolismo , Glicosilación/efectos de los fármacos , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Virión/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA