RESUMEN
Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.
Asunto(s)
COVID-19/inmunología , Caspasa 8/metabolismo , Interferón gamma/metabolismo , Linfohistiocitosis Hemofagocítica/inmunología , Macrófagos/inmunología , Mitocondrias/metabolismo , SARS-CoV-2/fisiología , Animales , Caspasa 8/genética , Células Cultivadas , Citotoxicidad Inmunológica , Humanos , Interferón gamma/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismoRESUMEN
The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto Joven , Humanos , Ratones , Animales , Anciano , SARS-CoV-2/genética , COVID-19/genética , Virulencia/genética , Mutación , Modelos Animales de EnfermedadRESUMEN
The E3 ligase ARIH2 has an unusual structure and mechanism of elongating ubiquitin chains. To understand its physiological role, we generated gene-targeted mice deficient in ARIH2. ARIH2 deficiency resulted in the embryonic death of C57BL/6 mice. On a mixed genetic background, the lethality was attenuated, with some mice surviving beyond weaning and then succumbing to an aggressive multiorgan inflammatory response. We found that in dendritic cells (DCs), ARIH2 caused degradation of the inhibitor IκBß in the nucleus, which abrogated its ability to sequester, protect and transcriptionally coactivate the transcription factor subunit p65 in the nucleus. Loss of ARIH2 caused dysregulated activation of the transcription factor NF-κB in DCs, which led to lethal activation of the immune system in ARIH2-sufficent mice reconstituted with ARIH2-deficient hematopoietic stem cells. Our data have therapeutic implications for targeting ARIH2 function.
Asunto(s)
Células Dendríticas/inmunología , Desarrollo Embrionario/inmunología , Insuficiencia Multiorgánica/inmunología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Hematopoyesis/genética , Humanos , Sistema Inmunológico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida , Insuficiencia Multiorgánica/genética , FN-kappa B/metabolismo , Activación Transcripcional/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética , Ubiquitinación/inmunologíaRESUMEN
The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.
Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Ubiquitina/metabolismo , Animales , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Cristalografía por Rayos X , Citocinas/genética , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos , Polarización de Fluorescencia , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Inhibidores de Proteasas/farmacología , Conformación Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Ubiquitinas/genética , Células VeroRESUMEN
Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , COVID-19/inmunología , Camélidos del Nuevo Mundo , Humanos , Ratones , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacologíaRESUMEN
BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.
Asunto(s)
Necroptosis , Enfermedad del Hígado Graso no Alcohólico , Humanos , Femenino , Masculino , Ratones , Animales , Epigénesis Genética , Enfermedad del Hígado Graso no Alcohólico/genética , Hepatocitos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteínas Quinasas/genéticaRESUMEN
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
Asunto(s)
COVID-19/etiología , COVID-19/patología , Antivirales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Humanos , Inflamasomas/fisiología , Interferones/metabolismo , Necroptosis/fisiología , Neutrófilos/patología , Neutrófilos/virología , Piroptosis/fisiología , SARS-CoV-2/patogenicidad , Tratamiento Farmacológico de COVID-19RESUMEN
OBJECTIVES: To examine the prevalence of tobacco use by product type among youths with cognitive disability; the prevalence of tobacco dependence among youths with cognitive disability; and the relationship between age of tobacco use initiation and cognitive disability. STUDY DESIGN: This cross-sectional study analyzed data from the 2019 National Youth Tobacco Survey (NYTS). Participants were a nationally representative sample of 19â018 students in grades 6-12. Estimates were calculated for ever use, current use, age of tobacco use initiation, and tobacco dependence. Associations between use patterns and cognitive disability status were examined using bivariate analyses and multivariable logistic regression. RESULTS: Compared with youths without cognitive disability, youths with cognitive disability had significantly greater odds of ever using any tobacco product (aOR, 1.49; 95% CI, 1.31-1.70), currently using any tobacco product (aOR, 1.41; 95% CI, 1.26-1.58), and currently using electronic cigarettes (e-cigarettes), cigarettes, cigars, hookahs, roll-your-own cigarettes, and heated tobacco products, specifically. They had higher prevalence and odds of reporting younger age of tobacco use initiation (aOR, 1.25; 95% CI, 1.10-1.43). Higher prevalence and odds of tobacco dependence were also observed among youths with cognitive disability compared with youths without cognitive disability (P < .001). CONCLUSIONS: These findings reinforce the importance of developing early primary prevention efforts to reduce or delay tobacco use among adolescents with cognitive disability. They also suggest the need to address co-occurring disorders during tobacco cessation programs with this high-risk group.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Tabaquismo , Adolescente , Cognición , Estudios Transversales , Humanos , Uso de Tabaco/epidemiología , Tabaquismo/epidemiología , Estados UnidosRESUMEN
OBJECTIVE: To examine psychiatric trainees teaching of supported decision-making (SDM). METHOD: New Zealand psychiatric trainees were surveyed about teaching regarding SDM using a novel tool. The analysis strategy examined the latent structure of the questionnaire and correlates of teaching in these areas. RESULTS: Forty nine trainees participated. Questions related to support from others and consistency of engagement were most highly endorsed while the concept of experiential learning was most poorly endorsed. Three latent factors were identified: 'enabling personhood', 'decision autonomy' and 'experiential learning'. Only gender correlated with the total summed score of the questionnaire, and two latent factors. CONCLUSIONS: Teaching about SDM occurs to some degree throughout New Zealand. The questionnaire captures the experience of learning in this area with a three-factor structure; enabling personhood, enhancing decisional autonomy and experiential learning.
Asunto(s)
Psiquiatría , Toma de Decisiones , Humanos , Nueva Zelanda , Aprendizaje Basado en Problemas , Psiquiatría/educación , Encuestas y Cuestionarios , EnseñanzaRESUMEN
The stress-activated protein kinases (SAPKs)/c-Jun-N-terminal-kinases (JNK) are members of the mitogen-activated protein kinase family. These kinases are responsible for transducing cellular signals through a phosphorylation-dependent signaling cascade. JNK activation in immune cells can lead to a range of critical cellular responses that include proliferation, differentiation and apoptosis. MKK4 is a SAPK that can activate both JNK1 and JNK2; however, its role in T-cell development and function has been controversial. Additionally, loss of either JNK1 or JNK2 has opposing effects in the generation of T-cell immunity to viral infection and cancer. We used mice with a conditional loss of MKK4 in T cells to investigate the in vivo role of MKK4 in T-cell development and function during lymphocytic choriomeningitis virus (LCMV) infection. We found no physiologically relevant differences in T-cell responses or immunity to either acute or chronic LCMV in the absence of MKK4.
Asunto(s)
Coriomeningitis Linfocítica , Proteínas Quinasas Activadas por Mitógenos , Animales , Diferenciación Celular , Activación Enzimática , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Linfocitos T/metabolismoRESUMEN
We have shown that cellular inhibitor of apoptosis proteins (cIAPs) impair clearance of hepatitis B virus (HBV) infection by preventing TNF-mediated killing/death of infected cells. A key question, with profound therapeutic implications, is whether this finding can be translated to the development of drugs that promote elimination of infected cells. Drug inhibitors of cIAPs were developed as cancer therapeutics to promote TNF-mediated tumor killing. These drugs are also known as Smac mimetics, because they mimic the action of the endogenous protein Smac/Diablo that antagonizes cIAP function. Here, we show using an immunocompetent mouse model of chronic HBV infection that birinapant and other Smac mimetics are able to rapidly reduce serum HBV DNA and serum HBV surface antigen, and they promote the elimination of hepatocytes containing HBV core antigen. The efficacy of Smac mimetics in treating HBV infection is dependent on their chemistry, host CD4(+) T cells, and TNF. Birinapant enhances the ability of entecavir, an antiviral nucleoside analog, to reduce viral DNA production in HBV-infected animals. These results indicate that birinapant and other Smac mimetics may have efficacy in treating HBV infection and perhaps, other intracellular infections.
Asunto(s)
Hepatitis B/tratamiento farmacológico , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Animales , Antivirales/farmacología , Linfocitos T CD4-Positivos/citología , ADN Viral/sangre , Dipéptidos/farmacología , Modelos Animales de Enfermedad , Guanina/análogos & derivados , Guanina/farmacología , Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/sangre , Virus de la Hepatitis B , Hepatocitos/citología , Hepatocitos/metabolismo , Hepatocitos/virología , Inmunofenotipificación , Indoles/farmacología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Plásmidos/metabolismoRESUMEN
Hepatitis B virus (HBV) infection can result in a spectrum of outcomes from immune-mediated control to disease progression, cirrhosis, and liver cancer. The host molecular pathways that influence and contribute to these outcomes need to be defined. Using an immunocompetent mouse model of chronic HBV infection, we identified some of the host cellular and molecular factors that impact on infection outcomes. Here, we show that cellular inhibitor of apoptosis proteins (cIAPs) attenuate TNF signaling during hepatitis B infection, and they restrict the death of infected hepatocytes, thus allowing viral persistence. Animals with a liver-specific cIAP1 and total cIAP2 deficiency efficiently control HBV infection compared with WT mice. This phenotype was partly recapitulated in mice that were deficient in cIAP2 alone. These results indicate that antagonizing the function of cIAPs may promote the clearance of HBV infection.
Asunto(s)
Virus de la Hepatitis B , Hepatitis B/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Citocinas/metabolismo , ADN Viral/genética , Modelos Animales de Enfermedad , Genotipo , Hepatocitos/metabolismo , Hepatocitos/virología , Inmunofenotipificación , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Necroptosis, a type of lytic cell death executed by the pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) has been implicated in the detrimental inflammation caused by SARS-CoV-2 infection. We minimally and extensively passaged a single clinical SARS-CoV-2 isolate to create models of mild and severe disease in mice allowing us to dissect the role of necroptosis in SARS-CoV-2 disease pathogenesis. We infected wild-type and MLKL-deficient mice and found no significant differences in viral loads or lung pathology. In our model of severe COVID-19, MLKL-deficiency did not alter the host response, ameliorate weight loss, diminish systemic pro-inflammatory cytokines levels, or prevent lethality in aged animals. Our in vivo models indicate that necroptosis is dispensable in the pathogenesis of mild and severe COVID-19.
Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/metabolismo , Necroptosis/fisiología , Proteínas Quinasas/metabolismo , Modelos Animales de Enfermedad , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismoRESUMEN
PURPOSE: The benefits of volunteering among youth are well documented. However, research is limited on volunteering among youth with disabilities. This study examined prevalence and associations of volunteering among youth with disabilities. METHODS: We analyzed data from the 2016-2018 National Survey of Children's Health (n= 42 204). Prevalence estimates were calculated for sociodemographic and household factors, volunteering, and functional limitations. Bivariate and multivariable associations between participation in volunteering activities and variables of interest were assessed. RESULTS: Youth with disabilities had lower prevalence of volunteering compared to youth without disabilities (48.4% vs. 55.6%). Youth with hearing and vision impairments had the lowest prevalence of volunteering (2.1% and 2.5%, respectively). Correlates of volunteering included health status (adjusted odds ratios (aOR)=1.81; 95% confidence interval (CI) 1.13-2.91), sex, and age. CONCLUSIONS: Our study found low prevalence of volunteering among youth with disabilities. Since youth with disabilities face unique barriers to social inclusion, it is important to identify and reduce the barriers to participation among this group. Volunteer opportunities in the community should be designed to be both environmentally and programmatically accessible to youth with disabilities. These efforts should include accommodations and other support so that participants can fully experience all of the benefits of volunteering.Implications for rehabilitationOur multiyear nationally representative study found low prevalence of volunteering among youth with disabilities, particularly those with hearing and vision impairments.Since youth with disabilities face unique barriers to social inclusion, it is important to identify and reduce the barriers to participation among this group.Our findings support the need for environmentally and programmatically accessible volunteering opportunities for youth with disabilities.These efforts should include accommodations and other support so that participants can fully experience all of the benefits of volunteering.
Asunto(s)
Personas con Discapacidad , Niño , Humanos , Adolescente , Estado de Salud , Voluntarios , Prevalencia , Salud InfantilRESUMEN
HIV-1 persists indefinitely in people living with HIV (PLWH) on antiretroviral therapy (ART). If ART is stopped, the virus rapidly rebounds from long-lived latently infected cells. Using a humanized mouse model of HIV-1 infection and CD4+ T cells from PLWH on ART, we investigate whether antagonizing host pro-survival proteins can prime latent cells to die and facilitate HIV-1 clearance. Venetoclax, a pro-apoptotic inhibitor of Bcl-2, depletes total and intact HIV-1 DNA in CD4+ T cells from PLWH ex vivo. This venetoclax-sensitive population is enriched for cells with transcriptionally higher levels of pro-apoptotic BH3-only proteins. Furthermore, venetoclax delays viral rebound in a mouse model of persistent HIV-1 infection, and the combination of venetoclax with the Mcl-1 inhibitor S63845 achieves a longer delay in rebound compared with either intervention alone. Thus, selective inhibition of pro-survival proteins can induce death of HIV-1-infected cells that persist on ART, extending time to viral rebound.
Asunto(s)
Seropositividad para VIH , VIH-1 , Humanos , Animales , Ratones , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: The 2022 outbreak of mpox (formerly known as monkeypox) led to the spread of monkeypox virus (MPXV) in over 110 countries, demanding effective disease management and surveillance. As current diagnostics rely largely on centralised laboratory testing, our objective was to develop a simple rapid point-of-care assay to detect MPXV in clinical samples using isothermal amplification coupled with CRISPR and CRISPR-associated protein (Cas) technology. METHODS: In this proof-of-concept study, we developed a portable isothermal amplification CRISPR-Cas12a-based assay for the detection of MPXV. We designed a panel of 22 primer-guide RNA sets using pangenome and gene-agnostic approaches, and subsequently shortlisted the three sets producing the strongest signals for evaluation of analytical sensitivity and specificity using a fluorescence-based readout. The set displaying 100% specificity and the lowest limit of detection (LOD) was selected for further assay validation using both a fluorescence-based and lateral-flow readout. Assay specificity was confirmed using a panel of viral and bacterial pathogens. Finally, we did a blind concordance study on genomic DNA extracted from 185 clinical samples, comparing assay results with a gold-standard quantitative PCR (qPCR) assay. We identified the optimal time to detection and analysed the performance of the assay relative to qPCR using receiver operating characteristic (ROC) curves. We also assessed the compatibility with lateral-flow strips, both visually and computationally, where strips were interpreted blinded to the fluorescence results on the basis of the presence or absence of test bands. FINDINGS: With an optimal run duration of approximately 45 min from isothermal amplification to CRISPR-assay readout, the MPXV recombinase polymerase amplification CRISPR-Cas12a-based assay with the selected primer-guide set had an LOD of 1 copy per µL and 100% specificity against tested viral pathogens. Blinded concordance testing of 185 clinical samples resulted in 100% sensitivity (95% CI 89·3-100) and 99·3% specificity (95% CI 95·7-100) using the fluorescence readout. For optimal time to detection by fluorescence readout, we estimated the areas under the ROC curve to be 0·98 at 2 min and 0·99 at 4 min. Lateral-flow strips had 100% sensitivity (89·3-100) and 98·6% specificity (94·7-100) with both visual and computational assessment. Overall, lateral-flow results were highly concordant with fluorescence-based readouts (179 of 185 tests, 96·8% concordant), with discrepancies associated with low viral load samples. INTERPRETATION: Our assay for the diagnosis of mpox displayed good performance characteristics compared with qPCR. Although optimisation of the assay will be required before deployment, its usability and versatility present a potential solution to MPXV detection in low-resource and remote settings, as well as a means of community-based, on-site testing. FUNDING: Victorian Medical Research Accelerator Fund and the Australian Government Department of Health.
RESUMEN
BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.
Asunto(s)
COVID-19 , Proteínas Portadoras , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas contra la COVID-19 , SARS-CoV-2 , Subunidades de Proteína , COVID-19/prevención & control , Australia , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos AntiviralesRESUMEN
The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
RESUMEN
Targeting the potent immunosuppressive properties of FOXP3+ regulatory T cells (Tregs) has substantial therapeutic potential for treating autoimmune and inflammatory diseases. Yet, the molecular mechanisms controlling Treg homeostasis, particularly during inflammation, remain unclear. We report that caspase-8 is a central regulator of Treg homeostasis in a context-specific manner that is decisive during immune responses. In mouse genetic models, targeting caspase-8 in Tregs led to accumulation of effector Tregs resistant to apoptotic cell death. Conversely, inflammation induced the MLKL-dependent necroptosis of caspase-8-deficient lymphoid and tissue Tregs, which enhanced immunity to a variety of chronic infections to promote clearance of viral or parasitic pathogens. However, improved immunity came at the risk of lethal inflammation in overwhelming infections. Caspase-8 inhibition using a clinical-stage compound revealed that human Tregs have heightened sensitivity to necroptosis compared with conventional T cells. These findings reveal a fundamental mechanism in Tregs that could be targeted to manipulate the balance between immune tolerance versus response for therapeutic benefit.
Asunto(s)
Caspasa 8/metabolismo , Tolerancia Inmunológica , Linfocitos T Reguladores , Animales , Homeostasis , Inflamación/metabolismo , RatonesRESUMEN
Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.