Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 13(6): 951-62, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24745038

RESUMEN

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light. The best understood insert-Cys CBCR is the violet/orange CBCR NpF2164g3 from Nostoc punctiforme, which has a stable second linkage in the violet-absorbing dark state. Photoconversion of NpF2164g3 leads to elimination of the second linkage and formation of an orange-absorbing photoproduct. We recently reported NMR chemical shift assignments for the orange-absorbing photoproduct state of NpF2164g3. We here present equivalent information for its violet-absorbing dark state. In both photostates, NpF2164g3 is monomeric in solution and regions containing the two conserved Cys residues essential for photoconversion are structurally disordered. In contrast to blue light receptors such as phototropin, NpF2164g3 is less structurally ordered in the dark state than in the photoproduct. The insert-Cys insertion loop and C-terminal helix exhibit light-dependent structural changes. Moreover, a motif containing an Asp residue also found in other CBCRs and in phytochromes adopts a random-coil structure in the dark state but a stable α-helix structure in the photoproduct. NMR analysis of the chromophore is consistent with a less ordered dark state, with A-ring resonances only resolved in the photoproduct. The C10 atom of the bilin chromophore exhibits a drastic change in chemical shift upon photoconversion, changing from 34.5 ppm (methylene) in the dark state to 115 ppm (methine) in the light-activated state. Our results provide structural insight into the two-Cys photocycle of NpF2164g3 and the structurally diverse mechanisms used for light perception by the larger phytochrome superfamily.


Asunto(s)
Proteínas Bacterianas/química , Nostoc/química , Fotorreceptores Microbianos/química , Secuencia de Aminoácidos , Oscuridad , Luz , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones/química
2.
BMC Complement Altern Med ; 13: 133, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23768005

RESUMEN

BACKGROUND: The plant genus Fallopia is well-known in Chinese traditional medicine and includes many species that contain bioactive compounds, namely phytoestrogens. Consumption of phytoestrogens may be linked to decreased incidence of breast and prostate cancers therefore discovery of novel phytoestrogens and novel sources of phytoestrogens is of interest. Although phytoestrogen content has been analyzed in the rhizomes of various Fallopia sp., seeds of a Fallopia sp. have never been examined for phytoestrogen presence. METHODS: Analytical chemistry techniques were used with guidance from an in vitro estrogen receptor bioassay (a stably transfected human ovarian carcinoma cell line) to isolate and identify estrogenic components from seeds of Fallopia convolvulus. A transiently transfected human breast carcinoma cell line was used to characterize the biological activity of the isolated compounds on estrogen receptors (ER) α and ß. RESULTS: Two compounds, emodin and the novel flavan-3-ol, (-)-epiafzelechin-3-O-p-coumarate (rhodoeosein), were identified to be responsible for estrogenic activity of F. convolvulus seed extract. Absolute stereochemistry of rhodoeosein was determined by 1 and 2D NMR, optical rotation and circular dichroism. Emodin was identified by HPLC/DAD, LC/MS/MS, and FT/ICR-MS. When characterizing the ER specificity in biological activity of rhodoeosein and emodin, rhodoeosein was able to exhibit a four-fold greater relative estrogenic potency (REP) in breast cells transiently-transfected with ERß as compared to those transfected with ERα, and emodin exhibited a six-fold greater REP in ERß-transfected breast cells. Cell type-specific differences were observed with rhodoeosein but not emodin; rhodoeosein produced superinduction of reporter gene activity in the human ovarian cell line (> 400% of maximum estradiol [E2] induction) but not in the breast cell line. CONCLUSION: This study is the first to characterize the novel flavan-3-ol compound, rhodoeosein, and its ability to induce estrogenic activity in human cell lines. Rhodoeosein and emodin may have potential therapeutic applications as natural products activating ERß, and further characterization of rhodoeosein is necessary to evaluate its selectivity as a cell type-specific ER agonist.


Asunto(s)
Medicamentos Herbarios Chinos/química , Receptor alfa de Estrógeno/agonistas , Receptor beta de Estrógeno/agonistas , Flavonoides/química , Fitoestrógenos/química , Polygonaceae/química , Semillas/química , Línea Celular Tumoral , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Flavonoides/aislamiento & purificación , Flavonoides/metabolismo , Humanos , Estructura Molecular , Fitoestrógenos/aislamiento & purificación , Fitoestrógenos/metabolismo , Unión Proteica
3.
J Am Chem Soc ; 134(20): 8487-93, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22497289

RESUMEN

The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.

4.
Biochemistry ; 50(41): 8823-33, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21870860

RESUMEN

Heme oxygenase (HO), from the pathogenic bacterium N. meningitidis(NmHO), which secures host iron, shares many properties with mammalian HOs but also exhibits some key differences. The crystal structure appears more compact, and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D (1)H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross-peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin, and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~10(2) increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/química , Neisseria meningitidis/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X/métodos , Hemina/química , Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Termodinámica
5.
J Med Chem ; 46(3): 359-63, 2003 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-12540235

RESUMEN

Double rotational-echo double resonance (double REDOR) NMR was used to investigate the conformation of a (13)C-, (15)N-, and (19)F-labeled inhibitor (Berlex Biosciences compound no. ZK-806299) bound to human factor Xa. Conformationally dependent carbon-fluorine dipolar couplings were measured by (13)C[(19)F] REDOR. Natural abundance carbon signals in the full-echo spectra were removed by (13)C[(15)N] REDOR. Major and minor binding modes were suggested by the NMR data, but only the former had adequate signal to noise for distance determinations. Molecular dynamics simulations restrained by double-REDOR-determined intramolecular (13)C-(19)F distances revealed two models for the dominant binding mode that are consistent with the NMR data. We conclude that ZK-806299 binds similarly to both FXa. Moreover, it appears to bind to FXa in a fashion previously demonstrated for ZK-807834, a more selective FXa inhibitor.


Asunto(s)
Amidinas/química , Factor Xa/química , Piridinas/química , Sitios de Unión , Inhibidores del Factor Xa , Humanos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Tripsina/química
6.
Carbohydr Polym ; 110: 360-6, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-24906767

RESUMEN

This is the first report on surface structural elucidation of individual nanocellulose as colloidal suspensions by 1D 1H, 2D heteronuclear single quantum coherence (HSQC) as well as 13C nuclear magnetic resonance (NMR). 1H NMR of rice straw CNCs (4.7 nm thick, 143 nm long, 0.04 sulfate per AG or 19.0% surface hydroxyl to sulfate conversion) resembled that of homogeneous cellulose solution. Conventional 2D HSQC NMR of CNC, CNF 1.5 (2-14 nm thick, several micrometers long, 0.10 COOH per AG) and CNF10 (2.0 nm thick, up to 1 µm long, 0.28 COOH per AG) gave H1:H2 ratios of 1.08:1, 0.97:1 and 0.94:1, respectively, all close to the theoretical 1:1 value for cellulose. The H1:H6 ratios determined from 2D HSQC NMR for CNCs, CNF1.5 and CNF10 were 1:1.47, 1:0.88 and 1:0.14, respectively, and corresponded to 26%, 56% and 93% C6 primary hydroxyl conversion to sulfate and carboxyl groups, consistent with, but more sensitive than those by conductometric titration and X-ray diffraction. Both 1H and 2D HSQC NMR data confirm that solution-state NMR detects nanocellulose surface carbons and protons primarily, validating this technique for direct surface characterization of nanocellulose in aqueous colloidal suspensions, presenting a sensitive and meaningful NMR tool for direct characterizing individual nanocellulose surfaces in never-dried state.


Asunto(s)
Celulosa/química , Coloides/química , Nanofibras/química , Nanopartículas/química , Oryza/química , Celulosa/ultraestructura , Nanofibras/ultraestructura , Nanopartículas/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Propiedades de Superficie , Suspensiones , Agua/química
7.
ACS Comb Sci ; 14(4): 280-4, 2012 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-22352295

RESUMEN

Practical and efficient methods have been developed for the diversity-oriented synthesis of isoxazolodihydropyridinones via the 1,3-dipolar cycloaddition of nitrile oxides onto 2,4-dioxopiperidines. A select few of these isoxazolodihydropyridinones were further elaborated with triazoles by copper-catalyzed azide-alkyne cycloaddition reactions. A total of 70 compounds and intermediates were synthesized and analyzed for drug likeness. Sixty-four of these novel compounds were submitted to the NIH Molecular Libraries Small Molecule Repository for high-throughput biological screening.


Asunto(s)
Isoxazoles/síntesis química , Nitrilos/química , Óxidos/química , Piperidinas/química , Piridonas/síntesis química , Alquinos/química , Azidas/química , Catálisis , Cobre/química , Ciclización , Ensayos Analíticos de Alto Rendimiento , Isoxazoles/química , Estructura Molecular , Piridonas/química , Bibliotecas de Moléculas Pequeñas/química
8.
Biochemistry ; 42(26): 7942-9, 2003 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-12834346

RESUMEN

13C[(15)N] and (13)C[(19)F] rotational-echo double-resonance NMR have been used to characterize the enzyme-bound structure of ZK-816042, an amidine-imidazoline inhibitor of human factor Xa (FXa). The NMR experiments were performed on a lyophilized FXa-inhibitor complex. The complex was formed in solution in the presence of stabilizing excipients and frozen after gradual supercooling prior to lyophilization. The results indicate that the inhibitor binds with a distribution of orientations of the imidazoline ring.


Asunto(s)
Amidinas/química , Factor Xa/química , Imidazoles/química , Piridinas/química , Sitios de Unión , Inhibidores del Factor Xa , Humanos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA