Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Methods ; 214: 18-27, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37037308

RESUMEN

Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.


Asunto(s)
Pirazoles , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Pirazoles/química , Benzodioxoles/química , Espectroscopía de Resonancia Magnética , Agregado de Proteínas
2.
Chemistry ; 29(12): e202203466, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36445819

RESUMEN

Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.

3.
Angew Chem Int Ed Engl ; 60(38): 20984-20990, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34289241

RESUMEN

Nuclear magnetic resonance is usually drastically limited by its intrinsically low sensitivity: Only a few spins contribute to the overall signal. To overcome this limitation, hyperpolarization methods were developed that increase signals several times beyond the normal/thermally polarized signals. The ideal case would be a universal approach that can signal enhance the complete sample of interest in solution to increase detection sensitivity. Here, we introduce a combination of para-hydrogen enhanced magnetic resonance with the phenomenon of the RASER: Large signals of para-hydrogen enhanced molecules interact with the magnetic resonance coil in a way that the signal is spontaneously converted into an in-phase signal. These molecules directly interact with other compounds via dipolar couplings and enhance their signal. We demonstrate that this is not only possible for solvent molecules but also for an amino acid.

4.
Angew Chem Int Ed Engl ; 60(45): 24075-24079, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34477305

RESUMEN

Atomic details of structured water molecules are indispensable to understand the thermodynamics of important biological processes including the proton conduction mechanism of the M2 protein. Despite the expectation of structured water molecules based on crystal structures of Influenza A M2, only two water populations have been observed by NMR in reconstituted lipid bilayer samples. These are the bulk- and lipid-associated water populations typically seen in membrane samples. Here, we detect a bound water molecule at a chemical shift of 11 ppm, located near the functional histidine 37 residue in the M2 conductance domain, which comprises residues 18 to 60. Combining 100 kHz magic-angle spinning NMR, dynamic nuclear polarization and density functional theory calculations, we show that the bound water forms a hydrogen bond to the δ1 nitrogen of histidine 37.


Asunto(s)
Histidina/química , Virus de la Influenza A/química , Agua/química , Teoría Funcional de la Densidad , Resonancia Magnética Nuclear Biomolecular
5.
Small ; 16(44): e2004922, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33030805

RESUMEN

For the first time Janus-like films of surface-acylated cellulose nanowhiskers (CNWs) with or without graphene oxide (GO) via one-step evaporation-driven self-assembly process are reported, which have reconstructible time-dependent micro-/nanostructures and asymmetric wettability. The heterogeneous aggregation of CNWs on rough Teflon substrates favors the formation of uniform films, leading to hydrophobic smooth bottom surface. The homogeneous nucleation of residual CNWs in bulk suspensions promotes the growth of patchy microspheres with an average diameter of 22.7 ± 2.1 µm, which precipitate on the top surface leading to enhanced hydrophobicity. These patchy microspheres are thermoresponsive and vanish after heating at 60 °C within 1 min, while they are reconstructed at room temperature with time-dependent evolving micro-/nanostructures in dry state within 2 d. The thermoresponsive transition of patchy microparticles leads to accompanied switchable change between transparency and opacity of Janus-like films. Furthermore, the incorporation of GO generates more patchy microspheres with an average diameter of 13.5 ± 1.3 µm on the top surface of hybrid Janus-like films. Different distributions of CNWs and GO in Janus-like films and the solvent-responsive self-assembled patchy microparticles of CNWs facilitate their reversible actuation by showing fast curling in THF within 6 s and flattening in water for at least 25 cycles.

6.
Chemphyschem ; 21(15): 1622-1626, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32558171

RESUMEN

The NMR pulse sequence CODEX (centerband-only detection of exchange) is a widely used method to report on the number of magnetically inequivalent spins that exchange magnetization via spin diffusion. For crystals, this rules out certain symmetries, and the rate of equilibration is sensitive to distances. Here we show that for 13 C CODEX, consideration of natural abundance spins is necessary for crystals of high complexity, demonstrated here with the amino acid phenylalanine. The NMR data rule out the C2 space group that was originally reported for phenylalanine, and are only consistent with a larger unit cell containing eight magnetically inequivalent molecules. Such an expanded cell was recently described based on single crystal data. The large unit cell dictates the use of long spin diffusion times of more than 200 seconds, in order to equilibrate over the entire unit cell volume of 1622 Å3 .

7.
Angew Chem Int Ed Engl ; 58(5): 1402-1406, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30485626

RESUMEN

Nuclear magnetic resonance (NMR) techniques play an essential role in natural science and medicine. In spite of the tremendous utility associated with the small energies detected, the most severe limitation is the low signal-to-noise ratio. Dynamic nuclear polarization (DNP), a technique based on transfer of polarization from electron to nuclear spins, has emerged as a tool to enhance sensitivity of NMR. However, the approach in liquids still faces several challenges. Herein we report the observation of room-temperature, liquid DNP 13 C signal enhancements in organic small molecules as high as 600 at 9.4 Tesla and 800 at 1.2 Tesla. A mechanistic investigation of the 13 C-DNP field dependence shows that DNP efficiency is raised by proper choice of the polarizing agent (paramagnetic center) and by halogen atoms as mediators of scalar hyperfine interaction. Observation of sizable DNP of 13 CH2 and 13 CH3 groups in organic molecules at 9.4 T opens perspective for a broader application of this method.

8.
Phys Chem Chem Phys ; 20(6): 4317-4328, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29367980

RESUMEN

Perovskite-based material Sc-doped BaZrO3 is a promising protonic conductor but with substantially lower conductivities than its Y-doped counterpart. 1H solid-state NMR spectroscopy in combination with DFT modelling was used to analyze the protonic distribution in BaZr1-xScxO3-x/2-y(OH)2y and its effect on charge carrier mobility. 1H single pulse and 1H-45Sc TRAPDOR MAS NMR experiments highlighted the mobile character of the proton charge carriers at room temperature, giving rise to a single broad resonance, protons hopping between multiple sites on the NMR timescale. At low temperatures, the protonic motion was successfully slowed down allowing direct observation of the various proton environments present in the structure. For x ≤ 0.15, DFT modelling suggested a tendency for strong dopant-proton association leading to Sc-OH-Zr environments with 1H NMR shifts of 4.8 ppm. The Zr-OH-Zr environment, H-bonded to a Sc-O-Zr, lies 32 kJ mol-1 higher in energy than the Sc-OH-Zr environment, suggesting that the Sc-OH-Zr environment is trapped. However, even at these low concentrations, Sc-Sc clustering could not be ruled out as additional proton environments with stronger 1H-45Sc dipolar couplings were observed (at 4.2 and 2.8 ppm). For x = 0.25, DFT modelling on the dry material predicted that Sc-□-Sc environments were extremely stable, again highlighting the likelihood of dopant clustering. A large number of possible configurations exists in the hydrated material, giving rise to a large distribution in 1H chemical shifts and multiple conduction pathways. The 1H shift was found to be strongly related to the length of the O-H bond and, in turn, to the hydrogen bonding and OOH distances. The breadth of the NMR signal observed at low temperature for x = 0.30 indicated a large range of different OH environments, those with lower shifts being generally closer to more than one Sc dopant. Lower DFT energy structures were generally associated with weaker H-bonding environments. Both the calculations and the DFT modelling indicated that the protons tend to strongly bond to the Sc clusters, which, in conjunction with the higher energies of configurations containing Zr-OH-Zr groups, could help explain the lower conductivities recorded for the Sc-substituted BaZrO3 in comparison to its yttrium counterpart.

9.
Angew Chem Int Ed Engl ; 57(50): 16323-16328, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30264507

RESUMEN

Many natural materials have helical or twisting shapes. Herein, we show the formation of helical fibers with the lengths of micrometers by the evaporation-driven self-assembly on silicon wafers of functionalized cellulose nanowhiskers (CNWs) with surface-attached acyl chains. The self-assembly process and the final helical structures were affected by parameters including the wettability of substrates, dispersing solvents, the amount of 10-undecenoyl groups, the crystallinity, the dimension of CNWs, and the length of acyl chains. In particular, surface-acylated CNWs with a certain amount of 10-undecenoyl groups (ca. 3.52 mmol g-1 ), an appropriate crystallinity (ca. 40 %), a length of about 135 nm, and a diameter of around 4 nm, preferentially self-assembled into explicit left-handed helical fibers from their THF suspensions on wafers. Thus, we showed novel particular self-assembly behaviors of surface-acylated CNWs, and we expanded the materials spectrum for the construction of helical structures.

10.
J Am Chem Soc ; 138(36): 11958-69, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27538437

RESUMEN

While solid-state NMR spectroscopic techniques have helped clarify the local structure and dynamics of ionic conductors, similar studies of mixed ionic-electronic conductors (MIECs) have been hampered by the paramagnetic behavior of these systems. Here we report high-resolution (17)O (I = 5/2) solid-state NMR spectra of the mixed-conducting solid oxide fuel cell (SOFC) cathode material La2NiO4+δ, a paramagnetic transition-metal oxide. Three distinct oxygen environments (equatorial, axial, and interstitial) can be assigned on the basis of hyperfine (Fermi contact) shifts and quadrupolar nutation behavior, aided by results from periodic DFT calculations. Distinct structural distortions among the axial sites, arising from the nonstoichiometric incorporation of interstitial oxygen, can be resolved by advanced magic angle turning and phase-adjusted sideband separation (MATPASS) NMR experiments. Finally, variable-temperature spectra reveal the onset of rapid interstitial oxide motion and exchange with axial sites at ∼130 °C, associated with the reported orthorhombic-to-tetragonal phase transition of La2NiO4+δ. From the variable-temperature spectra, we develop a model of oxide-ion dynamics on the spectral time scale that accounts for motional differences of all distinct oxygen sites. Though we treat La2NiO4+δ as a model system for a combined paramagnetic (17)O NMR and DFT methodology, the approach presented herein should prove applicable to MIECs and other functionally important paramagnetic oxides.

11.
Phys Chem Chem Phys ; 16(6): 2597-606, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24382459

RESUMEN

Structural characterization of Brownmillerite Ba2In2O5 was achieved by an approach combining experimental solid-state NMR spectroscopy, density functional theory (DFT) energetics, and GIPAW NMR calculations. While in the previous study of Ba2In2O5 by Adler et al. (S. B. Adler, J. A. Reimer, J. Baltisberger and U. Werner, J. Am. Chem. Soc., 1994, 116, 675-681), three oxygen resonances were observed in the (17)O NMR spectra and assigned to the three crystallographically unique O sites, the present high resolution (17)O NMR measurements under magic angle spinning (MAS) find only two resonances. The resonances have been assigned using first principles (17)O GIPAW NMR calculations to the combination of the O ions connecting the InO4 tetrahedra and the O ions in equatorial sites in octahedral InO6 coordination, and to the axial O ions linking the four- and six-fold coordinated In(3+) ions. Possible structural disorder was investigated in two ways: firstly, by inclusion of the high-energy structure also previously studied by Mohn et al. (C. E. Mohn, N. L. Allan, C. L. Freeman, P. Ravindran and S. Stølen, J. Solid State Chem., 2005, 178, 346-355), where the structural O vacancies are stacked rather than staggered as in Brownmillerite and, secondly, by exploring structures derived from the ground-state structure but with randomly perturbed atomic positions. There is no noticeable NMR evidence for any substantial occupancy of the high-energy structure at room temperature.

12.
ChemSusChem ; : e202400647, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853691

RESUMEN

We report the catalytic synthesis of 3-hydroxy-2-butanon (acetoin) from acetaldehyde as a key step in the synthesis of C4-molecules from ethanol. Facile C-C-bond formation at the α-carbon of the C2 building block is achieved using an N-heterocyclic carbene (NHC) catalyst. The immobilization of the catalyst on a Merrifield's peptide resin and its spectroscopic characterisation using solid-state Nuclear Magnetic Resonance (NMR) is described herein. The immobilization of the NHC catalyst allows for process intensification steps and the reported catalytic system was subjected to batch recycling as well as continuous flow experiments. The robustness of the catalytic system was shown over a maximum of 10 h time-on-stream. Overall, high selectivity S > 90% was observed. The observed deactivation of the catalyst with increasing time-on-stream is explained by ex-situ1H solution-state, as well as 13C and 15N solid-state NMR spectra allowing us to develop a deeper understanding of the underlying decomposition mechanism of the catalyst.

13.
ACS Appl Bio Mater ; 6(1): 309-317, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36538701

RESUMEN

Fluorophores emitting in the near-infrared (NIR) wavelength region present optimal characteristics for photonics and especially bioimaging. Unfortunately, only few NIR fluorescent materials are known, and even fewer are biocompatible. For this reason, the scientific interest in designing NIR fluorophores is very high. Egyptian Blue (CaCuSi4O10, EB) is an NIR fluorescent layered silicate that can be exfoliated into fluorescent nanosheets (EB-NS). So far, its surface chemistry has not been tailored, but this is crucial for colloidal stability and biological targeting. Here, we demonstrate covalent surface functionalization of EB nanosheets (EBfunc) via Si-H activation using hydrosilanes with variable functionalities. In the first part of this work, EB-NS are grafted with the visible fluorescent pyrene (Pyr) moieties to demonstrate conjugation by colocalization of the Vis/NIR fluorescence on the (single) EB-NS level. Next, the same grafting procedure was repeated and validated with carboxyl group (COOH)-containing hydrosilanes. These groups serve as a generic handle for further (bio)functionalization of the EB-NS surface. In this way, folic acid (FA) could be conjugated to EB-NS, allowing the targeting of folic acid receptor-expressing cancer cells. These results highlight the potential of this surface chemistry approach to modify EB-NS, enabling targeted NIR imaging for biomedical applications.


Asunto(s)
Colorantes Fluorescentes , Silicatos , Cobre , Ácido Fólico
14.
Adv Mater ; 35(49): e2306621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37768320

RESUMEN

Metal chloride complexes react with tris(trimethylsilyl)phosphine under mild condition to produce metal phosphide (TMP) nanoparticles (NPs), and chlorotrimethylsilane as a byproduct. The formation of Si-Cl bonds that are stronger than the starting M-Cl bonds acts as a driving force for the reaction. The potential of this strategy is illustrated through the preparation of ruthenium phosphide NPs using [RuCl2 (cymene)] and tris(trimethylsilyl)phosphine at 35 °C. Characterization with a combination of techniques including electron microscopy (EM), X-ray absorption spectroscopy (XAS), and solid-state nuclear magnetic resonance (NMR) spectroscopy, evidences the formation of small (diameter of 1.3 nm) and amorphous NPs with an overall Ru50 P50 composition. Interestingly, these NPs can be easily immobilized on functional support materials, which is of great interest for potential applications in catalysis and electrocatalysis. Mo50 P50 and Co50 P50 NPs can also be synthesized following the same strategy. This approach is simple and versatile and paves the way toward the preparation of a wide range of transition metal phosphide nanoparticles under mild reaction conditions.

15.
Nat Commun ; 13(1): 5385, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104315

RESUMEN

Aggregation of amyloidogenic proteins is a characteristic of multiple neurodegenerative diseases. Atomic resolution of small molecule binding to such pathological protein aggregates is of interest for the development of therapeutics and diagnostics. Here we investigate the interaction between α-synuclein fibrils and anle138b, a clinical drug candidate for disease modifying therapy in neurodegeneration and a promising scaffold for positron emission tomography tracer design. We used nuclear magnetic resonance spectroscopy and the cryogenic electron microscopy structure of α-synuclein fibrils grown in the presence of lipids to locate anle138b within a cavity formed between two ß-strands. We explored and quantified multiple binding modes of the compound in detail using molecular dynamics simulations. Our results reveal stable polar interactions between anle138b and backbone moieties inside the tubular cavity of the fibrils. Such cavities are common in other fibril structures as well.


Asunto(s)
Benzodioxoles , alfa-Sinucleína , Benzodioxoles/química , Agregado de Proteínas , Pirazoles/química , alfa-Sinucleína/metabolismo
16.
Nat Commun ; 12(1): 4231, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244499

RESUMEN

Pathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.


Asunto(s)
Amiloide/metabolismo , Agregación Patológica de Proteínas/patología , ARN/metabolismo , Proteínas tau/metabolismo , Amiloide/ultraestructura , Técnicas Biosensibles , Humanos , Resonancia Magnética Nuclear Biomolecular , ARN/ultraestructura , ARN de Hongos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Proteínas tau/aislamiento & purificación , Proteínas tau/ultraestructura
17.
Sci Adv ; 7(20)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33990334

RESUMEN

Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes.


Asunto(s)
Amiloide , alfa-Sinucleína , Amiloide/química , Cinética , Fosfolípidos
18.
J Phys Chem Lett ; 8(1): 61-66, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27936800

RESUMEN

In order to better understand the structure and dynamics of methylammonium lead halide perovskites, we performed NMR, NQR, and DFT studies of CH3NH3PbI3 in the tetragonal and cubic phase. Our results indicate that the space group of the tetragonal phase is the nonpolar I4/mcm. The highly dynamic methylammonium moiety shows no indication of the occurrence of additional orientations of the C-N bond close to the c-axis at temperatures approaching the cubic phase. Crystal quality effects are shown to influence the 14N NMR and 127I NQR spectra, and the effects of high-temperature annealing on defects can be observed. A strong increase in T2 relaxation time of the 207Pb NMR signal on cooling is found, and is an indication of slow motions in the PbI6 octahedra at room temperature. These results aid in the understanding of the structure of methylammonium lead halides and enable further studies of defects in these materials.

19.
Chem Sci ; 7(6): 3667-3675, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997858

RESUMEN

Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO3 structure to form Na x Sr1-x SiO3-0.5x , and with >10 mol% Na doping, phase separation occurs, leading to the formation of an amorphous phase ß-Na2Si2O5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, ß-Na2Si2O5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.

20.
Chem Mater ; 27(11): 3861-3873, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26321789

RESUMEN

A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25-32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H-17O double resonance experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA