Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Rev Neurosci ; 19(2): 107-118, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29321683

RESUMEN

During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca2+ spikes. Recent evidence reveals that thalamic Ca2+ spikes are inextricably linked to global somatodendritic Ca2+ transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness.


Asunto(s)
Nivel de Alerta/fisiología , Plasticidad Neuronal/fisiología , Sueño de Onda Lenta/fisiología , Tálamo/fisiología , Animales , Humanos
2.
J Neurosci ; 37(21): 5319-5333, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28450536

RESUMEN

Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca2+-imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons.SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of cellular output to the locations that receive most input: the dendrites. In thalamocortical and thalamic reticular nucleus neurons, the site of AP generation and the true extent of backpropagation remain unknown. Using patch-clamp recordings, this study measures dendritic propagation of APs directly in these neurons. In either cell type, high-frequency low-threshold spike burst or lower-frequency tonic APs undergo substantial voltage attenuation as they spread into the dendritic tree. Therefore, backpropagating spikes in these cells can only influence signaling in the proximal part of the dendritic tree.


Asunto(s)
Potenciales de Acción , Neuronas GABAérgicas/fisiología , Núcleos Talámicos/fisiología , Animales , Dendritas/fisiología , Femenino , Masculino , Ratas , Ratas Wistar , Núcleos Talámicos/citología
3.
J Neurosci ; 36(13): 3735-54, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27030759

RESUMEN

Thalamocortical neurons have thousands of synaptic connections from layer VI corticothalamic neurons distributed across their dendritic trees. Although corticothalamic synapses provide significant excitatory input, it remains unknown how different spatial and temporal input patterns are integrated by thalamocortical neurons. Using dendritic recording, 2-photon glutamate uncaging, and computational modeling, we investigated how rat dorsal lateral geniculate nucleus thalamocortical neurons integrate excitatory corticothalamic feedback. We find that unitary corticothalamic inputs produce small somatic EPSPs whose amplitudes are passively normalized and virtually independent of the site of origin within the dendritic tree. Furthermore, uncaging of MNI glutamate reveals that thalamocortical neurons have postsynaptic voltage-dependent mechanisms that can amplify integrated corticothalamic input. These mechanisms, involving NMDA receptors and T-type Ca(2+)channels, require temporally synchronous synaptic activation but not spatially coincident input patterns. In hyperpolarized thalamocortical neurons, T-type Ca(2+)channels produce nonlinear amplification of temporally synchronous inputs, whereas asynchronous inputs are not amplified. At depolarized potentials, the input-output function for synchronous synaptic input is linear but shows enhanced gain due to activity-dependent recruitment of NMDA receptors. Computer simulations reveal that EPSP amplification by T-type Ca(2+)channels and NMDA receptors occurs when synaptic inputs are either clustered onto individual dendrites or when they are distributed throughout the dendritic tree. Consequently, postsynaptic EPSP amplification mechanisms limit the "modulatory" effects of corticothalamic synaptic inputs on thalamocortical neuron membrane potential and allow these synapses to act as synchrony-dependent "drivers" of thalamocortical neuron firing. These complex thalamocortical input-output transformations significantly increase the influence of corticothalamic feedback on sensory information transfer. SIGNIFICANCE STATEMENT: Neurons in first-order thalamic nuclei transmit sensory information from the periphery to the cortex. However, the numerically dominant synaptic input to thalamocortical neurons comes from the cortex, which provides a strong, activity-dependent modulatory feedback influence on information flow through the thalamus. Here, we reveal how individual quantal-sized corticothalamic EPSPs propagate within thalamocortical neuron dendrites and how different spatial and temporal input patterns are integrated by these cells. We find that thalamocortical neurons have voltage- and synchrony-dependent postsynaptic mechanisms, involving NMDA receptors and T-type Ca(2+)channels that allow nonlinear amplification of integrated corticothalamic EPSPs. These mechanisms significantly increase the responsiveness of thalamocortical neurons to cortical excitatory input and broaden the "modulatory" influence exerted by corticothalamic synapses.


Asunto(s)
Corteza Cerebral/citología , Dendritas/fisiología , Retroalimentación Fisiológica/fisiología , Neuronas/citología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Calcio/farmacología , Simulación por Computador , Dendritas/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Retroalimentación Fisiológica/efectos de los fármacos , Femenino , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Técnicas In Vitro , Masculino , Modelos Neurológicos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Piridazinas/farmacología , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Tálamo/citología
4.
J Neurosci ; 35(47): 15505-22, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26609149

RESUMEN

Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. SIGNIFICANCE STATEMENT: Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Dendritas/fisiología , Neuronas/fisiología , Animales , Calcio/fisiología , Femenino , Cuerpos Geniculados/fisiología , Masculino , Ratas , Ratas Wistar
5.
J Neurosci ; 33(9): 3780-5, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447590

RESUMEN

Tonic inhibitory GABA(A) receptor-mediated currents are observed in numerous cell types in the CNS, including thalamocortical neurons of the ventrobasal thalamus, dentate gyrus granule cells, and cerebellar granule cells. Here we show that in rat brain slices, activation of postsynaptic GABA(B) receptors enhances the magnitude of the tonic GABA(A) current recorded in these cell types via a pathway involving G G proteins, adenylate cyclase, and cAMP-dependent protein kinase. Using a combination of pharmacology and knockout mice, we show that this pathway is independent of potassium channels or GABA transporters. Furthermore, the enhancement in tonic current is sufficient to significantly alter the excitability of thalamocortical neurons. These results demonstrate for the first time a postsynaptic crosstalk between GABA(B) and GABA(A) receptors.


Asunto(s)
Encéfalo/citología , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Receptores de GABA-B/fisiología , Sinapsis/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Biofisica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Interacciones Farmacológicas , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Femenino , GABAérgicos/farmacología , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de GABA-A/deficiencia , Receptores de GABA-B/deficiencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología , Tionucleótidos/farmacología
6.
Biol Psychiatry Glob Open Sci ; 3(3): 418-429, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519464

RESUMEN

Background: Striatal medium spiny neurons (MSNs) are preferentially lost in Huntington's disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington's disease and identified as a candidate risk gene in schizophrenia. Methods: Using human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published genome-wide association study datasets identified cell type-specific disease-related phenotypes. Results: We uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and PKA (protein kinase A)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling. Conclusions: Our study indicates that Huntington's disease and schizophrenia are likely to share neuronal pathophysiology where dysregulation of intracellular calcium homeostasis is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.

7.
J Neurosci ; 31(23): 8669-80, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653871

RESUMEN

Metabotropic glutamate receptors (mGluRs) play a crucial role in regulation of phasic inhibition within the visual thalamus. Here we demonstrate that mGluR-dependent modulation of interneuron GABA release results in dynamic changes in extrasynaptic GABA(A) receptor (eGABA(A)R)-dependent tonic inhibition in thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (dLGN). Application of the group I selective mGluR agonist dihydroxyphenylglycine produces a concentration-dependent enhancement of both IPSC frequency and tonic GABA(A) current (I(GABA)tonic) that is due to activation of both mGluR1a and mGluR5 subtypes. In contrast, group II/III mGluR activation decreases both IPSC frequency and I(GABA)tonic amplitude. Using knock-out mice, we show that the mGluR-dependent modulation of I(GABA)tonic is dependent upon expression of δ-subunit containing eGABA(A)Rs. Furthermore, unlike the dLGN, no mGluR-dependent modulation of I(GABA)tonic is present in TC neurons of the somatosensory ventrobasal thalamus, which lacks GABAergic interneurons. In the dLGN, enhancement of IPSC frequency and I(GABA)tonic by group I mGluRs is not action potential dependent, being insensitive to TTX, but is abolished by the L-type Ca(2+) channel blocker nimodipine. These results indicate selective mGluR-dependent modulation of dendrodendritic GABA release from F2-type terminals on interneuron dendrites and demonstrate for the first time the presence of eGABA(A)Rs on TC neuron dendritic elements that participate in "triadic" circuitry within the dLGN. These findings present a plausible novel mechanism for visual contrast gain at the thalamic level and shed new light upon the potential role of glial ensheathment of synaptic triads within the dLGN.


Asunto(s)
Interneuronas/fisiología , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Electrofisiología , Potenciales Postsinápticos Inhibidores/fisiología , Ratas , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
8.
J Physiol ; 590(16): 3691-700, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22641775

RESUMEN

The distribution of T-type Ca2+ channels along the entire somatodendritic axis of sensory thalamocortical (TC) neurons permits regenerative propagation of low threshold spikes (LTS) accompanied by global dendritic Ca2+ influx. Furthermore, T-type Ca2+ channels play an integral role in low frequency oscillatory activity (<1­4 Hz) that is a defining feature of TC neurons. Nonetheless, the dynamics of T-type Ca2+ channel-dependent dendritic Ca2+ signalling during slow sleep-associated oscillations remains unknown. Here we demonstrate using patch clamp recording and two-photon Ca2+ imaging of dendrites from cat TC neurons undergoing spontaneous slow oscillatory activity that somatically recorded δ (1­4 Hz) and slow (<1 Hz) oscillations are associated with rhythmic and sustained global oscillations in dendritic Ca2+. In addition, our data reveal the presence of LTS-dependent Ca2+ transients (Δ[Ca2+]) in dendritic spine-like structures on proximal TC neuron dendrites during slow (<1 Hz) oscillations whose amplitudes are similar to those observed in the dendritic shaft. We find that the amplitude of oscillation associated Δ[Ca2+] do not vary significantly with distance from the soma whereas the decay time constant (τdecay) of Δ[Ca2+] decreases significantly in more distal dendrites. Furthermore, τdecay of dendritic Δ[Ca2+] increases significantly as oscillation frequency decreases from δ to slow frequencies where pronounced depolarised UP states are observed. Such rhythmic dendritic Ca2+ entry in TC neurons during sleep-related firing patterns could be an important factor in maintaining the oscillatory activity and associated biochemical signalling processes, such as synaptic downscaling, that occur in non-REM sleep.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/citología , Células Dendríticas/metabolismo , Sueño/fisiología , Tálamo/citología , Animales , Gatos , Microscopía Confocal , Técnicas de Cultivo de Tejidos
9.
Pflugers Arch ; 463(1): 73-88, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21892727

RESUMEN

During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca(2+) potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed 'spikelets' during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Sueño/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Anestesia , Animales , Canales de Calcio Tipo T/fisiología , Electroencefalografía , Fenómenos Electrofisiológicos/fisiología , Ratones , Ratones Endogámicos C57BL , Neocórtex/fisiología
10.
Pflugers Arch ; 463(1): 201-12, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21861061

RESUMEN

The temporal coincidence of sleep spindles and spike-and-wave discharges (SWDs) in patients with idiopathic generalized epilepsies, together with the transformation of spindles into SWDs following intramuscular injection of the weak GABAA receptor (GABAAR) antagonist, penicillin, in an experimental model, brought about the view that SWDs may represent 'perverted' sleep spindles. Over the last 20 years, this hypothesis has received considerable support, in particular by in vitro studies of thalamic oscillations following pharmacological/genetic manipulations of GABAARs. However, from a critical appraisal of the evidence in absence epilepsy patients and well-established models of absence epilepsy it emerges that SWDs can occur as frequently during wakefulness as during sleep, with their preferential occurrence in either one of these behavioural states often being patient dependent. Moreover, whereas the EEG expression of both SWDs and sleep spindles requires the integrity of the entire cortico-thalamo-cortical network, SWDs initiates in cortex while sleep spindles in thalamus. Furthermore, the hypothesis of a reduction in GABAAR function across the entire cortico-thalamo-cortical network as the basis for the transformation of sleep spindles into SWDs is no longer tenable. In fact, while a decreased GABAAR function may be present in some cortical layers and in the reticular thalamic nucleus, both phasic and tonic GABAAR inhibitions of thalamo-cortical neurons are either unchanged or increased in this epileptic phenotype. In summary, these differences between SWDs and sleep spindles question the view that the EEG hallmark of absence seizures results from a transformation of this EEG oscillation of natural sleep.


Asunto(s)
Ondas Encefálicas/fisiología , Epilepsia Tipo Ausencia/fisiopatología , Sueño/fisiología , Animales , Humanos , Red Nerviosa/fisiología , Receptores de GABA-A/fisiología , Tálamo/citología , Tálamo/fisiología
11.
Nat Commun ; 13(1): 27, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031607

RESUMEN

Coordinated programs of gene expression drive brain development. It is unclear which transcriptional programs, in which cell-types, are affected in neuropsychiatric disorders such as schizophrenia. Here we integrate human genetics with transcriptomic data from differentiation of human embryonic stem cells into cortical excitatory neurons. We identify transcriptional programs expressed during early neurogenesis in vitro and in human foetal cortex that are down-regulated in DLG2-/- lines. Down-regulation impacted neuronal differentiation and maturation, impairing migration, morphology and action potential generation. Genetic variation in these programs is associated with neuropsychiatric disorders and cognitive function, with associated variants predominantly concentrated in loss-of-function intolerant genes. Neurogenic programs also overlap schizophrenia GWAS enrichment previously identified in mature excitatory neurons, suggesting that pathways active during prenatal cortical development may also be associated with mature neuronal dysfunction. Our data from human embryonic stem cells, when combined with analysis of available foetal cortical gene expression data, de novo rare variants and GWAS statistics for neuropsychiatric disorders and cognition, reveal a convergence on transcriptional programs regulating excitatory cortical neurogenesis.


Asunto(s)
Corteza Cerebral/embriología , Regulación del Desarrollo de la Expresión Génica , Guanilato-Quinasas/genética , Neurogénesis , Proteínas Supresoras de Tumor/genética , Animales , Diferenciación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Guanilato-Quinasas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Trastornos Mentales/genética , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas , Embarazo , Esquizofrenia/genética , Transcriptoma , Proteínas Supresoras de Tumor/metabolismo
12.
J Neurosci ; 30(44): 14843-53, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21048143

RESUMEN

Activity-dependent dendritic Ca(2+) signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamocortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites, respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca(2+) signaling during the different state-dependent firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca(2+) channels are expressed throughout the entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but not exclusive to, sleep states, resulting in global dendritic Ca(2+) influx. In contrast, actively backpropagating action potentials, typical of wakefulness, result in smaller Ca(2+) influxes that can temporally summate to produce dendritic Ca(2+) accumulations that are linearly related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca(2+) transients evoked by both action potentials and low-threshold spikes are shaped by Ca(2+) uptake by sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases but do not rely on Ca(2+)-induced Ca(2+) release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca(2+) signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagating action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticothalamic synapses only "detect" Ca(2+) signals associated with low-threshold spikes.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Dendritas/fisiología , Vías Nerviosas/citología , Tálamo/citología , Tálamo/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Retículo Endoplásmico/fisiología , Femenino , Masculino , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Sueño/fisiología , Vigilia/fisiología
13.
J Neurosci ; 30(1): 99-109, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20053892

RESUMEN

Although it is well established that low-voltage-activated T-type Ca(2+) channels play a key role in many neurophysiological functions and pathological states, the lack of selective and potent antagonists has so far hampered a detailed analysis of the full impact these channels might have on single-cell and neuronal network excitability as well as on Ca(2+) homeostasis. Recently, a novel series of piperidine-based molecules has been shown to selectively block recombinant T-type but not high-voltage-activated (HVA) Ca(2+) channels and to affect a number of physiological and pathological T-type channel-dependent behaviors. Here we directly show that one of these compounds, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), exerts a specific, potent (IC(50) = 22 nm), and reversible inhibition of T-type Ca(2+) currents of thalamocortical and reticular thalamic neurons, without any action on HVA Ca(2+) currents, Na(+) currents, action potentials, and glutamatergic and GABAergic synaptic currents. Thus, under current-clamp conditions, the low-threshold Ca(2+) potential (LTCP)-dependent high-frequency burst firing of thalamic neurons is abolished by TTA-P2, whereas tonic firing remains unaltered. Using TTA-P2, we provide the first direct demonstration of the presence of a window component of Ca(2+) channels in neurons and its contribution to the resting membrane potential of thalamic neurons and to the Up state of their intrinsically generated slow (<1 Hz) oscillation. Moreover, we demonstrate that activation of only a small fraction of the T-type channel population is required to generate robust LTCPs, suggesting that LTCP-driven bursts of action potentials can be evoked at depolarized potentials where the vast majority of T-type channels are inactivated.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/fisiología , Neuronas/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Gatos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Tálamo/efectos de los fármacos
14.
J Neurosci Res ; 89(8): 1284-94, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538467

RESUMEN

The contribution of heme oxygenase (HO)-linked pathways to neurodegeneration following cerebral hypoxia-ischemia (HI) remains unclear. We investigated whether HO modulators affected HI-induced brain damage and explored potential mechanisms involved. HI was induced in 26-day-old male Wistar rats by left common carotid artery ligation, followed by exposure to a humidified atmosphere of 8% oxygen for 1 hr. Tin protoporphyrin (SnPP; an HO inhibitor), ferriprotoporphyrin (FePP; an HO inducer), or saline was administered intraperitoneally once daily from 1 day prior to HI until sacrifice at 3 days post-HI. SnPP reduced (P < 0.05) infarct volume compared with saline-treated animals, but FePP had no effect on brain injury. SnPP did not significantly inhibit HO activity at 3 days post-HI, but SnPP increased (P < 0.001) total nitric oxide synthase (NOS) activity compared with HI + saline. Both inducible NOS and cyclooxygenase activities were attenuated (P < 0.05) by SnPP, whereas mitochondrial complex I and V activities were augmented (P < 0.05) by SnPP. SnPP had no effect on NMDA receptor currents. Overall, like other HO inhibitors, SnPP produced many nonselective effects, such as attenuation of inflammatory enzymes and increased mitochondrial respiratory function, which were associated with a protective response 3 days post-HI.


Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemina/farmacología , Hipoxia-Isquemia Encefálica/metabolismo , Metaloporfirinas/farmacología , Protoporfirinas/farmacología , Animales , Encéfalo/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Ratas Wistar
15.
Cell Rep ; 36(8): 109588, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433050

RESUMEN

Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.


Asunto(s)
Autorrenovación de las Células/fisiología , Hipocampo/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Diferenciación Celular/genética , Células Ependimogliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Hipocampo/efectos de los fármacos , Humanos , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo
16.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31209152

RESUMEN

Copy number variation (CNV) at chromosomal region 15q11.2 is linked to increased risk of neurodevelopmental disorders including autism and schizophrenia. A significant gene at this locus is cytoplasmic fragile X mental retardation protein (FMRP) interacting protein 1 (CYFIP1). CYFIP1 protein interacts with FMRP, whose monogenic absence causes fragile X syndrome (FXS). Fmrp knock-out has been shown to reduce tonic GABAergic inhibition by interacting with the δ-subunit of the GABAA receptor (GABAAR). Using in situ hybridization (ISH), qPCR, Western blotting techniques, and patch clamp electrophysiology in brain slices from a Cyfip1 haploinsufficient mouse, we examined δ-subunit mediated tonic inhibition in the dentate gyrus (DG). In wild-type (WT) mice, DG granule cells (DGGCs) responded to the δ-subunit-selective agonist THIP with significantly increased tonic currents. In heterozygous mice, no significant difference was observed in THIP-evoked currents in DGGCs. Phasic GABAergic inhibition in DGGC was also unaltered with no difference in properties of spontaneous IPSCs (sIPSCs). Additionally, we demonstrate that DG granule cell layer (GCL) parvalbumin-positive interneurons (PV+-INs) have functional δ-subunit-mediated tonic GABAergic currents which, unlike DGGC, are also modulated by the α1-selective drug zolpidem. Similar to DGGC, both IPSCs and THIP-evoked currents in PV+-INs were not different between Cyfip1 heterozygous and WT mice. Supporting our electrophysiological data, we found no significant change in hippocampal δ-subunit mRNA expression or protein level and no change in α1/α4-subunit mRNA expression. Thus, Cyfip1 haploinsufficiency, mimicking human 15q11.2 microdeletion syndrome, does not alter hippocampal phasic or tonic GABAergic inhibition, substantially differing from the Fmrp knock-out mouse model.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Giro Dentado/fisiología , Potenciales Postsinápticos Inhibidores , Interneuronas/fisiología , Receptores de GABA/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Giro Dentado/metabolismo , Femenino , Haploinsuficiencia , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Receptores de GABA/metabolismo
17.
Stem Cell Reports ; 12(2): 191-200, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30661995

RESUMEN

Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Cuerpo Estriado/citología , Hipocampo/citología , Interneuronas/citología , Células Madre Pluripotentes/citología , Animales , Cuerpo Estriado/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Humanos , Interneuronas/metabolismo , Eminencia Media/metabolismo , Eminencia Media/fisiología , Neurogénesis/fisiología , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Ratas
19.
Mol Pharmacol ; 73(1): 157-69, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17940193

RESUMEN

We hypothesized that lacosamide modulates voltage-gated sodium channels (VGSCs) at clinical concentrations (32-100 muM). Lacosamide reduced spiking evoked in cultured rat cortical neurons by 30-s depolarizing ramps but not by 1-s ramps. Carbamazepine and phenytoin reduced spike-firing induced by both ramps. Lacosamide inhibited sustained repetitive firing during a 10-s burst but not within the first second. Tetrodotoxin-sensitive VGSC currents in N1E-115 cells were reduced by 100 muM lacosamide, carbamazepine, lamotrigine, and phenytoin from V(h) of -60 mV. Hyperpolarization (500 ms) to -100 mV removed the block by carbamazepine, lamotrigine, and phenytoin but not by lacosamide. The voltage-dependence of activation was not changed by lacosamide. The inactive S-stereoisomer did not inhibit VGSCs. Steady-state fast inactivation curves were shifted in the hyperpolarizing direction by carbamazepine, lamotrigine, and phenytoin but not at all by lacosamide. Lacosamide did not retard recovery from fast inactivation in contrast to carbamazepine. Carbamazepine, lamotrigine, and phenytoin but not lacosamide all produced frequency-dependent facilitation of block of a 3-s, 10-Hz pulse train. Lacosamide shifted the slow inactivation voltage curve in the hyperpolarizing direction and significantly promoted the entry of channels into the slow inactivated state (carbamazepine weakly impaired entry into the slow inactivated state) without altering the rate of recovery. Lacosamide is the only analgesic/anticonvulsant drug that reduces VGSC availability by selective enhancement of slow inactivation but without apparent interaction with fast inactivation gating. The implications of this unique profile are being explored in phase III clinical trials for epilepsy and neuropathic pain.


Asunto(s)
Acetamidas/farmacología , Anticonvulsivantes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Potenciales de Acción , Animales , Células Cultivadas , Lacosamida , Ratas
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA