Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 43(7): 1035-1062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35968922

RESUMEN

Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.

2.
Methods Mol Biol ; 2690: 179-192, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450148

RESUMEN

Proteins are the building blocks of life, and a vast array of cellular processes is handled by protein-protein interactions (PPIs). The protein complexes formed via PPIs lead to tangled networks that, with their continuous remodeling, build up systematic functional units. Over the years, PPIs have become an area of interest for many researchers, leading to the development of multiple in vitro and in vivo methods to reveal these interactions. The yeast-two-hybrid (Y2H) system is a potent genetic way to map PPIs in both a micro- and high-throughput manner. Y2H is a technique that involves using modified yeast cells to identify protein-protein interactions. For Y2H, the yeast cells are engineered only to grow when there is a significant interaction between a specific protein with its interacting partner. PPIs are identified in the Y2H system by stimulating reporter genes in response to a restored transcription factor. However, Y2H results may be constrained by stringency requirements, as the limited number of colony screenings through this technique could result in the possible elimination of numerous genuine interactions. Therefore, DEEPN (dynamic enrichment for evaluation of protein networks) can be used, offering the potential to study the multiple static and transient protein interactions in a single Y2H experiment. DEEPN utilizes next-generation DNA sequencing (NGS) data in a high-throughput manner and subsequently applies computational analysis and statistical modeling to identify interacting partners. This protocol describes customized reagents and protocols through which DEEPN analysis can be utilized efficiently and cost-effectively.


Asunto(s)
Saccharomyces cerevisiae , Factores de Transcripción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Genes Reporteros , Factores de Transcripción/metabolismo , Mapeo de Interacción de Proteínas/métodos
3.
Trends Plant Sci ; 28(12): 1379-1390, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37453923

RESUMEN

Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.


Asunto(s)
Plantas , Transducción de Señal , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Evolución Biológica , Biología
4.
J Dev Biol ; 11(2)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367481

RESUMEN

Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.

5.
Trends Plant Sci ; 27(5): 426-429, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35177315

RESUMEN

Toll/interleukin-1 receptor (TIR) domain-containing proteins are conserved across kingdoms, and their mechanistic understanding holds promise for basic plant biology and agriculture. Here, we discuss the novel enzymatic TIR domain functions of nucleotide-binding leucine-rich repeat receptors (NLRs) in cell death, and posit how TIR domain-containing effectors mechanistically subvert host immune systems.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Muerte Celular , Plantas/genética , Plantas/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA