Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 587(7833): 291-296, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087930

RESUMEN

Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.


Asunto(s)
Proteínas de Unión al ADN/química , Conformación Molecular , Ácidos Nucleicos Heterodúplex/química , Proteínas de Arabidopsis/química , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Factores de Transcripción/química
2.
Proc Natl Acad Sci U S A ; 116(8): 3052-3061, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30733284

RESUMEN

Glucocorticoids (GCs) are used in combination chemotherapies as front-line treatment for B cell acute lymphoblastic leukemia (B-ALL). Although effective, many patients relapse and become resistant to chemotherapy and GCs in particular. Why these patients relapse is not clear. We took a comprehensive, functional genomics approach to identify sources of GC resistance. A genome-wide shRNA screen identified the transcriptional coactivators EHMT2, EHMT1, and CBX3 as important contributors to GC-induced cell death. This complex selectively supports GC-induced expression of genes contributing to cell death. A metaanalysis of gene expression data from B-ALL patient specimens revealed that Aurora kinase B (AURKB), which restrains GC signaling by phosphorylating EHMT1-2, is overexpressed in relapsed B-ALL, suggesting it as a potential contributor to relapse. Inhibition of AURKB enhanced GC-induced expression of cell death genes, resulting in potentiation of GC cytotoxicity in cell lines and relapsed B-ALL patient samples. This function for AURKB is distinct from its canonical role in the cell cycle. These results show the utility of functional genomics in understanding mechanisms of resistance and rapidly identifying combination chemotherapeutics.


Asunto(s)
Aurora Quinasa B/genética , Muerte Celular/genética , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Regulación Leucémica de la Expresión Génica/genética , Glucocorticoides/genética , Glucocorticoides/farmacología , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , ARN Interferente Pequeño/genética , Recurrencia
3.
Blood ; 129(22): 3000-3008, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424165

RESUMEN

Glucocorticoids (GCs), including dexamethasone (dex), are a central component of combination chemotherapy for childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). GCs work by activating the GC receptor (GR), a ligand-induced transcription factor, which in turn regulates genes that induce leukemic cell death. Which GR-regulated genes are required for GC cytotoxicity, which pathways affect their regulation, and how resistance arises are not well understood. Here, we systematically integrate the transcriptional response of B-ALL to GCs with a next-generation short hairpin RNA screen to identify GC-regulated "effector" genes that contribute to cell death, as well as genes that affect the sensitivity of B-ALL cells to dex. This analysis reveals a pervasive role for GCs in suppression of B-cell development genes that is linked to therapeutic response. Inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ), a linchpin in the pre-B-cell receptor and interleukin 7 receptor signaling pathways critical to B-cell development (with CAL-101 [idelalisib]), interrupts a double-negative feedback loop, enhancing GC-regulated transcription to synergistically kill even highly resistant B-ALL with diverse genetic backgrounds. This work not only identifies numerous opportunities for enhanced lymphoid-specific combination chemotherapies that have the potential to overcome treatment resistance, but is also a valuable resource for understanding GC biology and the mechanistic details of GR-regulated transcription.


Asunto(s)
Glucocorticoides/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Células Precursoras de Linfocitos B/efectos de los fármacos , Células Precursoras de Linfocitos B/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Dexametasona/farmacología , Resistencia a Antineoplásicos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-bcr/genética , Proteínas Proto-Oncogénicas c-bcr/metabolismo , ARN Interferente Pequeño/genética , Receptores de Glucocorticoides/efectos de los fármacos , Transducción de Señal
4.
bioRxiv ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798391

RESUMEN

Glucocorticoids, including dexamethasone and prednisone, are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency is a route to improving outcomes. However, systematic toxicities prevent the use of higher dose and more potent glucocorticoids. We therefore took a functional genomic approach to identify targets to enhance glucocorticoid activity specifically in B-ALL cells. Here we show that inhibition of the lymphoid-restricted PI3Kδ, signaling through the RAS/MAPK pathway, enhances both prednisone and dexamethasone activity in almost all ex vivo B-ALL specimens tested. This potentiation is most synergistic at sub-saturating doses of glucocorticoids, approaching the EC50. Potentiation correlates with global enhancement of glucocorticoid-induced gene regulation, including regulation of effector genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at MAPK1/ERK2 targets S203 and S226, and ablation of these phospho-acceptor sites enhances glucocorticoid potency. We further show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro, which impairs DNA binding. We therefore propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. The overall enhancement of GR function suggests that idelalisib will provide benefit to most patients with B-ALL by improving outcomes for patients whose disease is less responsive to glucocorticoid-based therapy, including high-risk disease, and allowing less toxic glucocorticoid-sparing strategies for patients with standard-risk disease.

5.
Cancers (Basel) ; 16(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201570

RESUMEN

Glucocorticoids are the cornerstone of B-lymphoblastic leukemia (B-ALL) therapy. Because response to glucocorticoids alone predicts overall outcomes for B-ALL, enhancing glucocorticoid potency should improve treatment. We previously showed that inhibition of the lymphoid-restricted PI3Kδ with idelalisib enhances glucocorticoid activity in B-ALL cells. Here, we show that idelalisib enhances glucocorticoid potency in 90% of primary B-ALL specimens and is most pronounced at sub-saturating doses of glucocorticoids near the EC50. Potentiation is associated with enhanced regulation of all glucocorticoid-regulated genes, including genes that drive B-ALL cell death. Idelalisib reduces phosphorylation of the glucocorticoid receptor (GR) at PI3Kδ/MAPK1 (ERK2) targets S203 and S226. Ablation of these phospho-acceptor sites enhances sensitivity to glucocorticoids with ablation of S226 in particular reducing synergy. We also show that phosphorylation of S226 reduces the affinity of GR for DNA in vitro. We propose that PI3Kδ inhibition improves glucocorticoid efficacy in B-ALL in part by decreasing GR phosphorylation, increasing DNA binding affinity, and enhancing downstream gene regulation. This mechanism and the response of patient specimens suggest that idelalisib will benefit most patients with B-ALL, but particularly patients with less responsive, including high-risk, disease. This combination is also promising for the development of less toxic glucocorticoid-sparing therapies.

6.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980188

RESUMEN

Barrier-to-autointegration factor (BAF) is an essential component of the nuclear lamina. Encoded by BANF1, this DNA binding protein contributes to the regulation of gene expression, cell cycle progression, and nuclear integrity. A rare recessive BAF variant, Ala12Thr, causes the premature aging syndrome, Néstor-Guillermo progeria syndrome (NGPS). Here, we report the first dominant pathogenic BAF variant, Gly16Arg, identified in a patient presenting with progressive neuromuscular weakness. Although disease variants carry nearby amino acid substitutions, cellular and biochemical properties are distinct. In contrast to NGPS, Gly16Arg patient fibroblasts show modest changes in nuclear lamina structure and increases in repressive marks associated with heterochromatin. Structural studies reveal that the Gly16Arg substitution introduces a salt bridge between BAF monomers, reducing the conformation ensemble available to BAF. We show that this structural change increases the double-stranded DNA binding affinity of BAF Gly16Arg. Together, our findings suggest that BAF Gly16Arg has an increased chromatin occupancy that leads to epigenetic changes and impacts nuclear functions. These observations provide a new example of how a missense mutation can change a protein conformational equilibrium to cause a dominant disease and extend our understanding of mechanisms by which BAF function impacts human health.


Asunto(s)
Núcleo Celular , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Cromatina , Proteínas de Unión al ADN/metabolismo , Fibrinógeno
7.
RSC Med Chem ; 12(2): 203-212, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046609

RESUMEN

Glucocorticoids (GCs) are widely used, potent anti-inflammatory and chemotherapeutic drugs. They work by binding to the glucocorticoid receptor (GR), a ligand-activated transcription factor, inducing translocation to the nucleus and regulation of genes that influence a variety of cellular activities. Despite being effective for a broad number of conditions, GC use is limited by severe side effects. To identify ligands that are more selective, we synthesized pairs of regioisomers in the pyrazole ring that probe the expanded binding pocket of GR opened by deacylcortivazol (DAC). Using an Ullmann-type reaction, a deacylcortivazol-like (DAC-like) backbone was modified with five pendant groups at the 1'- and 2'-positions of the pyrazole ring, yielding 9 ligands. Most of the compounds were cytotoxic to leukemia cells, and all required GR expression. Both aliphatic and other aromatic groups substituted at the 2'-position produced ligands with GC activity, with phenyl and 4-fluorophenyl substitutions exhibiting high cellular affinity for the receptor and >5× greater potency than dexamethasone, a commonly used strong GC. Surprisingly, phenyl substitution at the 1'-position produced a high-affinity ligand with ∼10× greater potency than dexamethasone, despite little apparent room in the expanded binding pocket to accommodate 1'-modifications. Other 1'-modifications, however, were markedly less potent. The potency of the 2'-substituted and 1'-substituted DAC-like compounds tracked linearly with cellular affinity but had different slopes, suggesting a different mode of interaction with GR. These data provide evidence that the expanded binding pocket opened by deacylcortivazol is more accommodating that expected, allowing development of new, and possibly selective, GCs by substitution within the pyrazole ring.

8.
J Infect Dis ; 200(12): 1921-7, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19909079

RESUMEN

BACKGROUND: The susceptibility of infants to infections is well defined clinically, and immunologic abnormalities have been described. Immune maturation is complex, however, and the interval during which changes occur during childhood has not been identified. METHODS: To assess age-related differences in the CD4(+) T cell responses, we evaluated the frequency of CD4(+) T cells that produced interferon (IFN) gamma in response to staphylococcal enterotoxin B (SEB) stimulation in 382 healthy infants and children (2 months to 11 years of age) and 66 adults. Flow cytometry was used to assess SEB-induced CD69 and CD40 ligand (CD40-L) expression and IFN-gamma production by CD4(+) and CD45RO(+)CD4(+) T cells. RESULTS: CD69 and CD40-L expression by CD4(+) and CD45RO(+)CD4(+) T cells were similar to adult levels from infancy, but the frequency of activated T cells that produced IFN-gamma remained lower than adult responses until children were 10 years of age. CONCLUSIONS: These observations indicate that the IFN-gamma response of CD4(+) T cells to SEB remains limited for a much longer interval than was reported elsewhere, extending to the second decade of life. Observed differences in CD45RO(+)CD4(+) T cell function indicate that CD4(+) T cells with the same phenotypes do not possess equivalent functional capabilities.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Enterotoxinas/inmunología , Interferón gamma/biosíntesis , Adolescente , Adulto , Factores de Edad , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Linfocitos T CD4-Positivos/química , Ligando de CD40/análisis , Niño , Preescolar , Femenino , Citometría de Flujo/métodos , Humanos , Lactante , Lectinas Tipo C , Antígenos Comunes de Leucocito/análisis , Subgrupos Linfocitarios/inmunología , Masculino , Adulto Joven
9.
J Steroid Biochem Mol Biol ; 103(3-5): 467-72, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17224270

RESUMEN

Growth plate chondrocytes produce proteoglycan-rich type II collagen extracellular matrix (ECM). During cell maturation and hypertrophy, ECM is reorganized via a process regulated by 1alpha,25(OH)(2)D(3) and involving matrix metalloproteinases (MMPs), including MMP-3 and MMP-2. 1alpha,25(OH)(2)D(3) regulates MMP incorporation into matrix vesicles (MVs), where they are stored until released. Like plasma membranes (PM), MVs contain the 1alpha,25(OH)(2)D(3)-binding protein ERp60, phospholipase A(2) (PLA(2)), and caveolin-1, but appear to lack nuclear Vitamin D receptors (VDRs). Chondrocytes produce 1alpha,25(OH)(2)D(3) (10(-8)M), which binds ERp60, activating PLA(2), and resulting lysophospholipids lead to MV membrane disorganization, releasing active MMPs. MV MMP-3 activates TGF-beta1 stored in the ECM as large latent TGF-beta1 complexes, consisting of latent TGF-beta1 binding protein, latency associated peptide, and latent TGF-beta1. Others have shown that MMP-2 specifically activates TGF-beta2. TGF-beta1 regulates 1alpha,25(OH)(2)D(3)-production, providing a mechanism for local control of growth factor activation. 1alpha,25(OH)(2)D(3) activates PKCalpha in the PM via ERp60-signaling through PLA(2), lysophospholipid production, and PLCbeta. It also regulates distribution of phospholipids and PKC isoforms between MVs and PMs, enriching the MVs in PKCzeta. Direct activation of MMP-3 in MVs requires ERp60. However, when MVs are treated with 1alpha,25(OH)(2)D(3), PKCzeta activity is decreased and PKCalpha is unaffected, suggesting a more complex feedback mechanism, potentially involving MV lipid signaling.


Asunto(s)
Comunicación Autocrina/efectos de los fármacos , Calcitriol/farmacología , Calreticulina/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Animales , Ratas , Transducción de Señal
10.
Biol Psychiatry ; 82(3): 213-223, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499489

RESUMEN

BACKGROUND: NPAS3 has been established as a robust genetic risk factor in major mental illness. In mice, loss of neuronal PAS domain protein 3 (NPAS3) impairs postnatal hippocampal neurogenesis, while loss of the related protein NPAS1 promotes it. These and other findings suggest a critical role for NPAS proteins in neuropsychiatric functioning, prompting interest in the molecular pathways under their control. METHODS: We used RNA sequencing coupled with chromatin immunoprecipitation sequencing to identify genes directly regulated by NPAS1 and NPAS3 in the hippocampus of wild-type, Npas1-/-, and Npas3-/- mice. Computational integration with human genetic and expression data revealed the disease relevance of NPAS-regulated genes and pathways. Specific findings were confirmed at the protein level by Western blot. RESULTS: This is the first in vivo, transcriptome-scale investigation of genes regulated by NPAS1 and NPAS3. These transcription factors control an ensemble of genes that are themselves also major regulators of neuropsychiatric function. Specifically, Fmr1 (fragile X syndrome) and Ube3a (Angelman syndrome) are transcriptionally regulated by NPAS3, as is the neurogenesis regulator Notch. Dysregulation of these pathways was confirmed at the protein level. Furthermore, NPAS1/3 targets show increased human genetic burden for schizophrenia and intellectual disability. CONCLUSIONS: Together, these data provide a clear, unbiased view of the full spectrum of genes regulated by NPAS1 and NPAS3 and show that these transcription factors are master regulators of neuropsychiatric function. These findings expose the molecular pathophysiology of NPAS1/3 mutations and provide a striking example of the shared, combinatorial nature of molecular pathways that underlie diagnostically distinct neuropsychiatric conditions.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trastornos Mentales/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Femenino , Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Hipocampo/metabolismo , Humanos , Masculino , Trastornos Mentales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transcripción Genética , Transcriptoma
11.
J Biomed Mater Res A ; 93(3): 897-909, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19705469

RESUMEN

Biomaterial surface properties such as microtopography and energy can change cellular responses at the cell-implant interface. Phospholipase D (PLD) is required for the differentiation of osteoblast-like MG63 cells on machined and grit-blasted titanium surfaces. Here, we determined if PLD is also required on microstructured/high-energy substrates and the mechanism involved. shRNAs for human PLD1 and PLD2 were used to silence MG63 cells. Wild-type and PLD1 or PLD1/2 silenced cells were cultured on smooth-pretreatment surfaces (PT); grit-blasted, acid-etched surfaces (SLA); and SLA surfaces modified to have higher surface energy (modSLA). PLD was inhibited with ethanol or activated with 24,25-dihydroxyvitamin-D(3) [24R,25(OH)(2)D(3)]. As surface roughness/energy increased, PLD mRNA and activity increased, cell number decreased, osteocalcin and osteoprotegerin increased, and protein kinase C (PKC) and alkaline phosphatase specific activities increased. Ethanol inhibited PLD and reduced surface effects on these parameters. There was no effect on these parameters after knockdown of PLD1, but PLD1/2 double knockdown had effects comparableto PLD inhibition. 24R,25(OH)(2)D(3) increased PLD activity and the production of osteocalcin and osteoprotegerin, but decreased cell number on the rough/high-energy surfaces. These results confirm that surface roughness/energy-induced PLD activity is required for osteoblast differentiation and that PLD2 is the main isoform involved in this pathway. PLD is activated by 24R,25(OH)(2)D(3) in a surface-dependent manner and inhibition of PLD reduces the effects of surface microstructure/energy on PKC, suggesting that PLD mediates the stimulatory effect of microstructured/high-energy surfaces via PKC-dependent signaling.


Asunto(s)
Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Fosfolipasa D/metabolismo , Titanio/química , Titanio/farmacología , Secuencia de Bases , Línea Celular , Células Clonales , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Humanos , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Fosfolipasa D/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos , Vitamina D/análogos & derivados , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA