Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Environ Res ; 241: 117612, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951380

RESUMEN

This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.


Asunto(s)
Diclorofeno , Contaminantes Químicos del Agua , Adsorción , Oxidación-Reducción
2.
Environ Sci Technol ; 57(5): 1894-1906, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36693029

RESUMEN

Polyurethane (PU) synthetic leathers possess an intricate plastic composition, including polyester (PET) base fabrics and upper PU resin, but the release of fragments from the complexes is unclear. Therefore, we investigated the photodegradation trends of PET base fabrics with PU coating (PET-U) as a representative of composite plastics. Attention was paid to the comparison of the photoaging process of PET-U with that of pure PET base fabric (PET-P). To reveal the potential for chain scission, physical and chemical changes (e.g., surface morphology, molecular weight, and crystallinity) of the two fabrics were explored. The generation of microplastic fibers (MPFs) and microplastic particles (MPPs) was distinguished. Compared with PET-P, PET-U showed a similar but delayed trend in various characteristics and debris release rate as the photoaging time prolonged. Even so, after 360 h of illumination, the generated number of MPs (including MPFs and MPPs) rose considerably to 9.32 × 107 MPs/g, and the amount of released nanoplastics (NPs) increased to 2.70 × 1011 NPs/g from PET-U. The suppression of MP formation from PET-U was potentially directed by the physical shielding of the upper PU layer and the dropped MPs, which resisted the photochemical radical effect. The components of dissolved organic matter derived from plastics (P-DOM) were separated by molecular weight using a size-exclusion chromatography-diode array detector-organic carbon detector/organic nitrogen detector (SEC-DAD-OCD/OND), and the results showed that a larger amount of carbon- and nitrogen-containing chemical substances were generated in PET-U, accompanied by more aromatic and fluorescent compounds. The results provided theoretical bases and insights for future research on the risks of plastic debris from PU synthetic leathers on aquatic organisms and indicated feasible directions for exploring combined pollution studies of plastics.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/química , Microplásticos , Poliuretanos , Poliésteres , Fotólisis , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Technol ; 57(40): 15255-15265, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37768274

RESUMEN

Numerous studies have emphasized the toxicity of graphene-based nanomaterials to algae, however, the fundamental behavior and processes of graphene in biological hosts, including its transportation, metabolization, and bioavailability, are still not well understood. As photosynthetic organisms, algae are key contributors to carbon fixation and may play an important role in the fate of graphene. This study investigated the biological fate of 14C-labeled few-layer graphene (14C-FLG) in Chlamydomonas reinhardtii (C. reinhardtii). The results showed that 14C-FLG was taken up by C. reinhardtii and then translocated into its chloroplast. Metabolomic analysis revealed that 14C-FLG altered the metabolic profiles (including sugar metabolism, fatty acid, and tricarboxylic acid cycle) of C. reinhardtii, which promoted the photosynthesis of C. reinhardtii and then enhanced their growth. More importantly, the internalized 14C-FLG was metabolized into 14CO2, which was then used to participate in the metabolic processes required for life. Approximately 61.63%, 25.31%, and 13.06% of the total radioactivity (from 14CO2) was detected in carbohydrates, lipids, and proteins of algae, respectively. Overall, these results reveal the role of algae in the fate of graphene and highlight the potential of available graphene in bringing biological effects to algae, which helps to better assess the environmental risks of graphene.

4.
Environ Sci Technol ; 56(13): 9435-9445, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35700278

RESUMEN

Numerous studies on the bioavailability of graphene-based nanomaterials relate to the water-only exposure route. However, the sediment exposure route should be the most important pathway for benthic organisms to ingest graphene, while to date little work on the bioavailability of graphene in benthic organisms has been explored. In this study, with the help of carbon-14-labeled few-layer graphene (14C-FLG), we quantificationally compared the bioaccumulation, biodistribution, and elimination kinetics of 14C-FLG in loaches via waterborne and sediment exposures. After 72 h of exposure, the accumulated 14C-FLG in loaches exposed via waterborne was 14.28 µg/g (dry mass), which was 3.18 times higher than that (4.49 µg/g) exposed via sediment. The biodistribution results showed that, compared to waterborne exposure, sediment exposure remarkably facilitated the transport of 14C-FLG from the gut into the liver, which made it difficult to be excreted. Although 14C-FLG did not cause significant hepatotoxicity, the disruption of intestinal microbiota homeostasis, immune response, and several key metabolic pathways in the gut were observed, which may be due to the majority of 14C-FLG being accumulated in the gut. Overall, this study reveals the different bioavailabilities of graphene in loaches via waterborne and sediment exposures, which is helpful in predicting its bioaccumulation capability and trophic transfer ability.


Asunto(s)
Cipriniformes , Grafito , Contaminantes Químicos del Agua , Animales , Disponibilidad Biológica , Radioisótopos de Carbono , Cipriniformes/metabolismo , Sedimentos Geológicos , Distribución Tisular , Contaminantes Químicos del Agua/metabolismo
5.
Environ Sci Technol ; 56(17): 12179-12189, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35947795

RESUMEN

Uptake kinetics and delivery mechanisms of nanoparticles (NPs) in crop plants need to be urgently understood for the application of nanotechnology in agriculture as delivery systems for eco-friendly nanoagrochemicals. Here, we investigated the uptake kinetics, translocation pathway, and key internalization process of graphene in wheat (Triticum aestivum L.) by applying three specific hydroponic cultivation methods (submerging, hanging, and split-root). Quantification results on the uptake of carbon-14 radiolabeled graphene in each tissue indicated that graphene could enter the root of wheat and further translocate to the shoot with a low delivery rate (<2%). Transmission electron microscopy (TEM) images showed that internalized graphene was transported to adjacent cells through the plasmodesmata, clearly indicating the symplastic pathway of graphene translocation. The key site for the introduction of graphene into root cells for translocation through the symplastic pathway is evidenced to be the apex of growing root hair, where the newly constructed primary cell wall is much thinner. The confirmation of uptake kinetics and delivery mechanisms is useful for the development of nanotechnology in sustainable agriculture, especially for graphene serving as the delivery vector for pesticides, genes, and sensors.


Asunto(s)
Grafito , Radioisótopos de Carbono/metabolismo , Grafito/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Triticum
6.
Environ Sci Technol ; 55(23): 15810-15820, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34757731

RESUMEN

We investigated the photoaging of polypropylene (PP) microplastics (MPs) in lake water. The results showed that photoaging of PP MPs was significantly inhibited in lake water compared with ultrapure water after 12 d of ultraviolet (UV) irradiation, and humic acid and fulvic acid, rather than carbonate (CO32-), nitrate (NO3-), or chloride (Cl-) ions, were identified as the primary contributors to the observed inhibition. Mechanisms for the roles of humic acid (Suwannee River humic acid) and fulvic acid (Pony Lake fulvic acid) in reducing the rates of photodegradation showed that humic acid and fulvic acid acted as both reactive oxygen species (ROS) scavengers (e.g., of •OH) (dominant contribution) and optical light filters. As ROS scavengers, humic acid and fulvic acid significantly decreased the capacity for the formation of •OH and O2•- by PP MPs under irradiation. In addition, the chromophores in humic acid and fulvic acid competed for photons with MPs through the light-shielding effect, thereby causing less fragmentation of PP particles and changes in other properties (melting temperature, contact angle, and surface zeta potential). The proposed mechanisms for inhibition by humic acid and fulvic acid will aid our efforts to assess the duration of aging and alterations of MP properties during long-term weathering in natural waters.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Benzopiranos , Sustancias Húmicas/análisis , Lagos , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
7.
Ecotoxicol Environ Saf ; 207: 111541, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254401

RESUMEN

Ammonia has been of concern for its high toxicity to aquatic species and frequent detection in waters worldwide. This study calculated the national aquatic life criteria for ammonia in China. The temporal and spatial distributions were investigated and the multi-tier ecological risks were assessed for ammonia and un-ionized ammonia (NH3) during 2014-2018 based on a total of 18989 ammonia monitoring data from 110 monitoring sites in seven river basins. The sensitivity comparison of different species taxa to ammonia showed that Perciformes fish should be listed as a priority protected species in the derivation of ammonia criteria. The participation of introduced aquaculture species have no significant impact on the final criteria values (t-test, p > 0.05). The final criterion maximum concentration (CMC) and criterion continuous concentration (CCC) were 10.24 and 3.31 mg/L for ammonia (pH 7.0 and 20 °C). The interannual variation showed that decreasing trends were observed for ammonia and NH3 pollutions in the past five years. However, the increasing trends were observed for ammonia in Liao River basin, for NH3 in Yangtze River and Pearl River basins (2014-2018). The significant seasonal and geographical differences of ammonia and NH3 pollution were found. Moreover, the pollutions of ammonia and NH3 in some monitoring points of Huai River, Yellow River and Songhua River basins at the provincial borders were significant. The result of ecological risk assessment showed that the average exceedance probability for 5% affected species by NH3 in long-term exposure was 28.96% in the past five years.


Asunto(s)
Amoníaco/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Amoníaco/toxicidad , Animales , China , Ecosistema , Peces , Agua Dulce , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/toxicidad
8.
Ecotoxicology ; 30(7): 1389-1398, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33420882

RESUMEN

Carboxylated multi-walled carbon nanotubes (MWCNT-COOH) exerts strong adsorption capacity for pentachlorophenol (PCP) and they inevitably co-occur in the environment, but few studies have characterized the effects of MWCNT-COOH on the bioavailability of PCP and its oxidative and tissue damages to fish. In this work, we assessed the PCP accumulation in different organs and the induced oxidative and tissue damages of goldfish following 50-d in vivo exposure to PCP alone or co-exposure with MWCNT-COOH. Our results indicated that PCP bioaccumulation in goldfish liver, gill, muscle, intestine and gut contents was inhibited after co-exposure with MWCNT-COOH in uptake phase. PCP exposure alone and co-exposure with MWCNT-COOH evoked severe oxidative and tissue damages in goldfish bodies, as indicated by significant inhibition of activities of antioxidant enzymes, remarkable decrease in glutathione level, simultaneous elevation of malondialdehyde content, and obvious histological damages to liver and gill. The decreased accumulation of PCP in the presence of MWCNT-COOH led to the reduction of PCP-induced toxicity to liver tissues, as confirmed by the alleviation of hepatic oxidative damages. However, co-exposure groups had higher concentrations of PCP in the tissues than PCP treatment alone (p < 0.05 each) in the depuration phase, revealing that MWCNT-COOH-bound pollutants might pose higher risk once desorbed from the nanoparticles. These results provided substantial information regarding the combined effects of PCP and MWCNT-COOH on aquatic species, which helps to deeply understand the potential ecological risks of the emerging pollutants.


Asunto(s)
Nanotubos de Carbono , Pentaclorofenol , Animales , Bioacumulación , Carpa Dorada , Nanotubos de Carbono/toxicidad , Estrés Oxidativo , Pentaclorofenol/toxicidad
9.
Ecotoxicol Environ Saf ; 198: 110676, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32361496

RESUMEN

Triclosan (TCS), an extensively used broad-spectrum antimicrobial agent, has raised significant environmental concerns regarding its widespread occurrence in waters. In this study, the removal of TCS in aqueous solution via peroxymonosulfate (PMS) activated by an extremely low-level Co2+ (0.02 µM) was systematically investigated. During preliminary test, TCS (10 µM) was totally degraded in 30 min by using 0.1 µM Co2+ and 40 µM PMS at pH 7.0 with a degradation rate constant of 0.1219 min-1. A first-order apparent degradation rate of TCS was found with respect to the PMS concentrations. At extremely low dosage of Co2+ (0.02 µM), the presence of NO3-, HCO3-, PLFA, and SRHA within test concentrations significantly inhibited TCS removal, while a dual effect of Cl- on the degradation rate of TCS was observed. The quenching experiments verified that SO4- was the dominant reactive oxygen species (ROS) rather than OH. Six major intermediates were identified using TOF-LC-MS, based on which we proposed three associated reaction pathways including hydroxylation, ether bond breakage, and dechlorination. Toxicity predictions by ECOSAR software exhibited aquatic toxicity reduction of TCS after Co2+/PMS treatment. We outlook these findings to advance the feasibility of organic contaminants removal via Co2+/PMS system with Co2+ at extremely low levels.


Asunto(s)
Cobalto/análisis , Peróxidos/análisis , Triclosán/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cinética , Triclosán/química , Agua
10.
Environ Sci Technol ; 53(24): 14528-14537, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31730354

RESUMEN

This study investigated the degradation of perfluorooctanesulfonate (PFOS) in a reactive electrochemical membrane (REM) system in which a porous Magnéli phase titanium suboxide ceramic membrane served simultaneously as the anode and the membrane. Near complete removal (98.30 ± 0.51%) of PFOS was achieved under a cross-flow filtration mode at the anodic potential of 3.15 V vs standard hydrogen electrode (SHE). PFOS removal efficiency during the REM operation is much greater than that of the batch operation mode under the same anodic potential. A systematic reaction rate analysis in combination with electrochemical characterizations quantitatively elucidated the enhancement of PFOS removal in REM operation in relation to the increased electroactive surface area and improved interphase mass transfer. PFOS appeared to undergo rapid mineralization to CO2 and F-, with only trace levels of short-chain perfluorocarboxylic acids (PFCAs, C4-C8) identified as intermediate products. Density functional theory (DFT) simulations and experiments involving free radical scavengers indicated that PFOS degradation was initiated by direct electron transfer (DET) on anode to yield PFOS free radicals (PFOS•), which further react with hydroxyl radicals that were generated by water oxidation and adsorbed on the anode surface (•OHads). The attack of •OHads is essential to PFOS degradation, because, otherwise, PFOS• may react with water and revert to PFOS.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Técnicas Electroquímicas , Electrodos , Oxidación-Reducción , Titanio
11.
Environ Sci Technol ; 53(7): 3579-3588, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30829479

RESUMEN

In the environment, microplastics are subjected to multiple aging processes; however, information regarding the impact of aging on the environmental behavior of microplastics is still lacking. This study investigated the alteration properties of polystyrene and high-density polyethylene microplastics by heat-activated K2S2O8 and Fenton treatments to improve the understanding of their long-term natural aging in aquatic environments. Our results indicated that the O/C ratio was an alternative parameter to the carbonyl index (CI) to quantitatively describe the surface alteration properties of microplastics. The correlation model of the O/C ratio or CI versus alteration time was developed and compared by natural alteration of microplastics in freshwater samples. Moreover, the regression equation of the equilibrium adsorption capacity of altered microplastics versus the O/C ratio and average size was proposed. This study is the first effort in differentiating the relationships between the alteration properties and alteration time/adsorption capacity of microplastics, which would be helpful for predicting the weathering degree and accumulation of hydrophilic antibiotics onto aged microplastics in aquatic environments. This research develops promising strategies to accelerate the aging reactions using advanced oxidation processes, which would provide further information to assess the microplastic pollution in actual environments.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Adsorción , Agua Dulce , Polietileno
12.
Environ Sci Technol ; 52(3): 1591-1601, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29283255

RESUMEN

The waterborne exposure of graphene to ecological receptors has received much attention; however, little is known about the contribution of food to the bioaccumulation potential of graphene. We investigated the effect of algal food on the uptake and distribution of 14C-labeled few-layer graphene (FLG) in freshwater snails, a favorite food for Asian people. In a water-only system, FLG (∼158 µg/L) was ingested by and accumulated in the snails. Adding algae to the water significantly enhanced FLG accumulation in the snails, with a bioaccumulation factor of 2.7 (48 h exposure). Approximately 92.5% of the accumulated FLG was retained in the intestine; in particular, the accumulated FLG in the intestine was able to pass through the intestinal wall and enter the intestinal epithelial cells. Of them, 1.3% was subsequently transferred/internalized to the liver/hepatocytes, a process that was not observed in the absence of the algae. Characterizations data further suggested that both of the extra- and intracellular FLG in the algae (the algae-bound fraction was 30.2%) significantly contributed to the bioaccumulation. Our results provide the first evidence that algae as carriers enhanced FLG bioavailability to the snails, as well as the potential of FLG exposure to human beings through consuming the contaminated snails.


Asunto(s)
Chlorophyta , Grafito , Animales , Disponibilidad Biológica , Proteínas Filagrina , Agua Dulce , Caracoles
13.
Environ Sci Technol ; 51(12): 6821-6828, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28505437

RESUMEN

Heteroaggregation of graphene oxide (GO) with nanometer- and micrometer-sized hematite colloids, which are naturally present in aquatic systems, is investigated in this study. The heteroaggregation rates between GO and hematite nanoparticles (HemNPs) were quantified by dynamic light scattering, while the heteroaggregation between GO and micrometer-sized hematite particles (HemMPs) was examined through batch adsorption and sedimentation experiments. The heteroaggregation rates of GO with HemNPs first increased and then decreased with increasing GO/HemNP mass concentration ratios. The conformation of GO-HemNP heteroaggregates at different GO/HemNP mass concentration ratios was observed through transmission electron microscopy imaging. Initially, GO underwent heteroaggregation with HemNPs through electrostatic attraction to form primary heteroaggregates, which were further bridged by GO to form bigger clusters. At high GO/HemNP mass concentration ratios where GO outnumbered HemNPs, heteroaggregation resulted in the formation of stable GO-HemNP nanohybrids that have a critical coagulation concentration of 308 mM NaCl at pH 5.2. In the case of HemMPs, GO adsorbed readily on the microparticles and, at an optimal GO/HemMP ratio of ∼0.002, the sedimentation of HemMPs was the fastest, most likely because of the formation of "electrostatic patches" leading to favorable aggregation of the microparticles.


Asunto(s)
Coloides , Compuestos Férricos , Grafito , Óxidos
14.
Environ Sci Technol ; 50(24): 13555-13564, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993046

RESUMEN

Understanding bioaccumulation and metabolism is critical for evaluating the fate and potential toxicity of compounds in vivo. We recently investigated, for the first time, the bioconcentration and tissue distribution of triphenyl phosphate (TPHP) and its main metabolites in selected tissues of adult zebrafish. To further confirm the metabolites, deuterated TPHP (d15-TPHP) was used in the exposure experiments at an environmentally relevant level (20 µg/L) and at 1/10 LC50 (100 µg/L). After 11-14 days of exposure to 100 µg/L of d15-TPHP, the accumulation and excretion of d15-TPHP reached equilibrium, at which point the intestine contained the highest d15-TPHP (µg/g wet weight, ww) concentration (3.12 ± 0.43), followed by the gills (2.76 ± 0.12) > brain (2.58 ± 0.19) > liver (2.30 ± 0.34) ≫ muscle (0.53 ± 0.04). The major metabolite of d15-TPHP, d10-diphenyl phosphate (d10-DPHP), was detected at significantly higher contents in the liver and intestine, at levels up to 3.0-3.5 times those of d15-TPHP. The metabolic pathways of TPHP were elucidated, including hydrolysis, hydroxylation, and glucuronic acid conjugation after hydroxylation. Finally, a physiologically based toxicokinetic (PBTK) model was used to explore the key factors influencing the bioaccumulation of d15-TPHP in zebrafish. These results provide important information for the understanding of the metabolism, disposition, and toxicology of TPHP in aquatic organisms.


Asunto(s)
Hígado/metabolismo , Pez Cebra/metabolismo , Animales , Branquias/metabolismo , Hidroxilación , Músculos/metabolismo
15.
Ecotoxicol Environ Saf ; 134P1: 124-132, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27611220

RESUMEN

Effects of chemical mixtures at environmentally relevant concentrations on endocrine systems of aquatic organisms are of concern. Triclocarban (TCC) and inorganic mercury (Hg2+) are ubiquitous in aquatic environments, and are known to interfere with endocrine pathways via different mechanisms of toxic action. However, effects of mixtures of the two pollutants on aquatic organisms and associated molecular mechanisms were unknown. This study examined effects of binary mixtures of TCC and Hg2+ on histopathological and biochemical alteration of reproductive organs in zebrafish (Danio rerio) after 21 d exposure. The results showed that: 1) At concentrations studied, TCC alone caused little effect on hepatic tissues, but it aggravated lesions in liver caused by Hg2+ via indirect mechanisms of disturbing homeostasis and altering concentrations of hormones; 2) Histological lesions were more severe in gonads of individuals, especially males, exposed to the binary mixture. Exposure to TCC alone (2.5 or 5µg/L) (measured concentration 140 or 310ng/L) or Hg2+ alone (5µg/L or 10µg/L (measured concentration 367 or 557ng/L) slightly retarded development of oocytes, whereas co-exposure to nominal concentrations of 5µg/L TCC and 10µg /L Hg2+ promoted maturation of oocytes. In males, maturation of sperm was slightly delayed by exposure to either TCC or Hg2+, while their combinations caused testes to be smaller and sperm to be fewer compared with fish exposed to either of the contaminants individually; 3) Lesions observed in fish exposed to binary mixtures might be due to altered transcription of genes involved in steroidogenesis, such as cyp19a, 3beta-HSD, cyp17, 17beta-HSD and modulated concentrations of testosterone and estradiol in blood plasma. The observed results further support the complexity of toxic responses of fish exposed to lesser concentrations of binary chemical mixtures. Since it is impossible to collect empirical information in controlled studies of all possible combinations of toxicants, the application of omics methods might improve the predictive capabilities of results of single classes of chemicals.

16.
Environ Sci Technol ; 49(19): 11894-902, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26378342

RESUMEN

Goldfish (Carassius auratus) were exposed to 0-100 µg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Carpa Dorada/crecimiento & desarrollo , Carpa Dorada/microbiología , Hígado/efectos de los fármacos , Pentaclorofenol/toxicidad , Animales , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Catalasa/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Superóxido Dismutasa/metabolismo
17.
J Environ Sci Health B ; 50(1): 23-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25421625

RESUMEN

Animal manure application is a main spreading route of veterinary antibiotics in soil and groundwater. The sorption and leaching behavior of five commonly used sulfonamides in five typical soil and soil/manure mixtures from China were investigated in this study. Results showed that the empirical Freundlich equation fits well the sorption behavior of selected sulfonamides (r(2) was between 0.803 and 0.999, 1/n was between 0.68 and 1.44), and pH and soil organic carbon (OC) were the key impact factors to sorption and leaching. Addition of manure was found to increase the Kd values of sulfonamides in five different soils, following the rules that the more polar substances, the more increased extent of sorption after manure amendment (5.87 times for sulfadiazine with Log Kow = -0.09, and 2.49 times for sulfamethoxazole with Log Kow = 0.89). When the simulated rainfall amount reached 300 mL (180 mm), sulfonamides have high migration potential to the groundwater, especially in the soil with low OC and high pH. However, manure amendment increased the sorption capacity of sulfonamides in the top layer, thus it might play a role in decreasing the mobility of sulfonamides in soils. The systematic study would be more significant to assess the ecological risks and suggest considering the influence of manure amendment for the environmental fate of antibiotics.


Asunto(s)
Antibacterianos/análisis , Estiércol/análisis , Suelo/química , Sulfanilamidas/análisis , Adsorción , Agricultura , Animales , Fenómenos Químicos , China , Concentración de Iones de Hidrógeno , Medición de Riesgo , Contaminantes del Suelo/análisis , Sulfanilamida , Porcinos
18.
J Environ Sci Health B ; 49(7): 468-79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24813981

RESUMEN

Scientific interest in pollution from antibiotics in animal husbandry has increased during recent years. However, there have been few studies on the vertical exposure characteristics of typical veterinary antibiotics in different exposure matrices from different livestock farms. This study explores the distribution and migration of antibiotics from feed to manure, from manure to soil, and from soil to vegetables, by investigating the exposure level of typical antibiotics in feed, manure, soil, vegetables, water, fish, and pork in livestock farms. A screening environmental risk assessment was conducted to identify the hazardous potential of veterinary antibiotics from livestock farms in southeast China. The results show that adding antibiotics to drinking water as well as the excessive use of antibiotic feed additives may become the major source of antibiotics pollution in livestock farms. Physical and chemical properties significantly affect the distribution and migration of various antibiotics from manure to soil and from soil to plant. Simple migration models can predict the accumulation of antibiotics in soil and plants. The environmental risk assessment results show that more attention should be paid to the terrestrial eco-risk of sulfadiazine, sulfamethazine, sulfamethoxazole, tetracycline, oxytetracycline, chlorotetracycline, ciprofloxacin, and enrofloxacin, and to the aquatic eco-risk of chlorotetracycline, ciprofloxacin, and enrofloxacin. This is the first systematic analysis of the vertical pollution characteristics of typical veterinary antibiotics in livestock farms in southeast China. It also identifies the ecological and human health risk of veterinary antibiotics.


Asunto(s)
Crianza de Animales Domésticos , Antibacterianos/análisis , Monitoreo del Ambiente , Alimentación Animal/análisis , Animales , Bovinos/metabolismo , Pollos/metabolismo , China , Ambiente , Estiércol/análisis , Medición de Riesgo , Sus scrofa/metabolismo
19.
J Hazard Mater ; 465: 133400, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38198871

RESUMEN

The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.


Asunto(s)
COVID-19 , Polipropilenos , Humanos , Ecosistema , Máscaras , Pandemias , Biopelículas , Carbono , Polietileno , Plásticos
20.
Chemosphere ; 352: 141442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346516

RESUMEN

Most previous studies have focused primarily on the adverse effects of environmental chemicals on organisms of good healthy. Although global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached approximately 25%, the impact of environmentally persistent organic chemicals on organisms with NAFLD is substantially unknown. Polyhalogenated carbazoles (PHCZs) as emerging contaminants have been frequently detected in the environment and organisms. In this study, we investigated the impact of the most frequently detected PHCZs, 3,6-dichlorocarbazole (36-CCZ), on zebrafish with high-fat diet (HFD)-induced NAFLD. After 4 weeks exposure to environmentally relevant concentrations of 36-CCZ (0.16-0.45 µg/L), the accumulation of lipid in zebrafish liver dramatically increased, and the transcription of genes involved in lipid synthesis, transport and oxidation was significantly upregulated, demonstrating that 36-CCZ had exacerbated the NAFLD in zebrafish. Lipidomic analysis indicated that 36-CCZ had significantly affected liver lipid metabolic pathways, mainly including glycerolipids and glycerophospholipids. Additionally, fifteen lipids were identified as potential lipid biomarkers for 36-CCZ exacerbation of NAFLD, including diacylglycerols (DGs), triglycerides (TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidic acid (PA), and phosphatidylinositol (PI). These findings demonstrate that long-term exposure to 36-CCZ can promote the progression of NAFLD, which will contribute to raising awareness of the health risks of PHCZs.


Asunto(s)
Carbazoles , Enfermedad del Hígado Graso no Alcohólico , Perciformes , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Pez Cebra/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Triglicéridos/metabolismo , Perciformes/metabolismo , Biomarcadores/metabolismo , Dieta Alta en Grasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA