Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38776383

RESUMEN

This study aims to enhance the degradation uniformity of PLGA sinus stents to minimize fracture risk caused by stress corrosion. Symmetric stent structures were introduced and compared to sinusoidal structure in terms of stress and degradation uniformity during implantation and degradation processes. Three surrogate models were employed to optimize the honeycomb-like structure. Results showed honeycomb-like structures exhibited the superior stress distribution and highest degradation uniformity. The kriging model achieved the smallest error and degradation uniformity of 83.24%. In conclusion, enhancing the symmetry of stent structures improves degradation uniformity, and the kriging model has potential for the optimization of stent structures.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38937925

RESUMEN

The clinical performance of biodegradable polymer stents implanted in blood vessels is affected by uneven degradation. Stress distribution plays an important role in polymer degradation, and local stress concentration leads to the premature fracture of stents. Numerical simulations combined with in vitro experimental validation can accurately describe the degradation process and perform structural optimization. Compared with traditional design techniques, optimization based on surrogate models is more scientifically effective. Three stent structures were designed and optimized, with the effective working time during degradation as the optimization goal. The finite element method was employed to simulate the degradation process of the stent. Surrogate models were employed to establish the functional relationship between the design parameters and the degradation performance. The proposed function models accurately predicted the degradation performance of various stents. The optimized stent structures demonstrated improved degradation performance, with the kriging model showing a better optimization effect. This study provided a novel approach for optimizing the structural design of biodegradable polymer stents to enhance degradation performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA