Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 186(16): 3460-3475.e23, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478862

RESUMEN

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Humanos , Expresión Génica , Células HEK293 , Células HeLa , Mutación , Transducción de Señal , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell ; 184(21): 5375-5390.e16, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34562363

RESUMEN

Although oxidative phosphorylation is best known for producing ATP, it also yields reactive oxygen species (ROS) as invariant byproducts. Depletion of ROS below their physiological levels, a phenomenon known as reductive stress, impedes cellular signaling and has been linked to cancer, diabetes, and cardiomyopathy. Cells alleviate reductive stress by ubiquitylating and degrading the mitochondrial gatekeeper FNIP1, yet it is unknown how the responsible E3 ligase CUL2FEM1B can bind its target based on redox state and how this is adjusted to changing cellular environments. Here, we show that CUL2FEM1B relies on zinc as a molecular glue to selectively recruit reduced FNIP1 during reductive stress. FNIP1 ubiquitylation is gated by pseudosubstrate inhibitors of the BEX family, which prevent premature FNIP1 degradation to protect cells from unwarranted ROS accumulation. FEM1B gain-of-function mutation and BEX deletion elicit similar developmental syndromes, showing that the zinc-dependent reductive stress response must be tightly regulated to maintain cellular and organismal homeostasis.


Asunto(s)
Estrés Fisiológico , Aminoácidos/química , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Femenino , Humanos , Iones , Ratones , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitinación/efectos de los fármacos , Zinc/farmacología
4.
Proc Natl Acad Sci U S A ; 121(10): e2317851121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38416684

RESUMEN

Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Haplotipos , Proteínas no Estructurales Virales , ARN Viral
5.
J Virol ; 97(12): e0151123, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38092661

RESUMEN

Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.


Asunto(s)
COVID-19 , Virus ARN , SARS-CoV-2 , Humanos , COVID-19/virología , Genoma Viral , Cuasiespecies , Virus ARN/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología
6.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37367486

RESUMEN

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Sofosbuvir/farmacología , Sofosbuvir/uso terapéutico , Hepacivirus/genética , Mutágenos/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/tratamiento farmacológico , Genotipo , Ribavirina/uso terapéutico , Resultado del Tratamiento , Quimioterapia Combinada
7.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36602354

RESUMEN

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Asunto(s)
COVID-19 , Ribavirina , Animales , Chlorocebus aethiops , Ribavirina/farmacología , Ribavirina/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , SARS-CoV-2/genética , Células Vero , Mutación , Mutágenos/farmacología
8.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569568

RESUMEN

MicroRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) are potential diagnostic and prognostic biomarkers. However, discrepancies in miRNA patterns and their validation are still frequent due to differences in sample origin, EV isolation, and miRNA sequencing methods. The aim of the present study is to find a reliable EV isolation method for miRNA sequencing, adequate for clinical application. To this aim, two comparative studies were performed in parallel with the same human plasma sample: (i) isolation and characterization of EVs obtained using three procedures: size exclusion chromatography (SEC), iodixanol gradient (GRAD), and its combination (SEC+GRAD) and (ii) evaluation of the yield of miRNA sequences obtained using NextSeq 500 (Illumina) and three miRNA library preparation protocols: NEBNext, NEXTFlex, and SMARTer smRNA-seq. The conclusion of comparison (i) is that recovery of the largest amount of EVs and reproducibility were attained with SEC, but GRAD and SEC+GRAD yielded purer EV preparations. The conclusion of (ii) is that the NEBNext library showed the highest reproducibility in the number of miRNAs recovered and the highest diversity of miRNAs. These results render the combination of GRAD EV isolation and NEBNext library preparation for miRNA retrieval as adequate for clinical applications using plasma samples.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Reproducibilidad de los Resultados , MicroARNs/genética , Vesículas Extracelulares/genética , Cromatografía en Gel , Plasma
9.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852791

RESUMEN

Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes.IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.


Asunto(s)
Adaptación Fisiológica , Técnicas de Cultivo de Célula , Hepacivirus/fisiología , Mutación , Replicación Viral , Línea Celular Tumoral , Humanos
10.
J Clin Microbiol ; 58(12)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32999010

RESUMEN

Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Sustitución de Aminoácidos , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Genotipo , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Insuficiencia del Tratamiento , Proteínas no Estructurales Virales/genética
13.
Gac Med Mex ; 156(5): 405-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33372941

RESUMEN

INTRODUCTION: Various biomarkers based on blood counts have been useful for the prognosis of patients critically ill with COVID-19. OBJECTIVE: To describe the usefulness of the neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR) and lymphocyte-to-platelet (LPR) ratios for the prognosis of mortality and ventilatory support requirement for COVID-19. METHOD: Retrospective cohort of clinical records of patients with COVID-19 who required hospital care. RESULTS: One-hundred and -twenty-five cases were analyzed; mean age was 51 years, and 60 % were of the male gender; 21.6 % had type 2 diabetes mellitus, and 18.4 % had hypertension. Mean leukocyte count was 9.5 x 103/µL, with a neutrophil mean of 8.0 x 103/µL. Mean NLR was 12.01, while for MLR it was 0.442, and for LPR, 373.07. Regarding the area under the curve, the following values were recorded for mortality: 0.594 for NLR, 0.628 for MLR and 0.505 for LPR; as for mechanical ventilation, the values were 0.581 for NLR, 0.619 for MLR and 0.547 for LPR. In the univariate analysis, an NLR value > 13 (OR: 2.750, p = 0.001) and an MLR of > 0.5 (OR: 2.069, p = 0.047) were associated with mortality; LPR showed no impact on mortality or respiratory support. CONCLUSION: NLR and MLR are useful for predicting mortality in patients with COVID-19.


INTRODUCCIÓN: Diversos biomarcadores basados en conteos sanguíneos han sido de utilidad para el pronóstico de los pacientes en estado crítico por COVID-19. OBJETIVO: Describir la utilidad de los índices neutrófilo/linfocito (INL), monocito/linfocito (IML) y linfocito/plaqueta (IPL) para el pronóstico de la mortalidad y necesidad de soporte ventilatorio por COVID-19. MÉTODO: Cohorte retrospectiva de registros clínicos de pacientes con COVID-19 que requirieron atención hospitalaria. RESULTADOS: Se analizaron 125 casos, la edad media fue de 51 años y 60 %, del sexo masculino; 21.6 % padecía diabetes mellitus tipo 2 y 18.4 %, hipertensión. La media de leucocitos fue 9.5 × 103/µL y la de neutrófilos, de 8.0 × 103/µL. La media del INL fue de 12.01; del IML, de 0.442 y del IPL, de 373.07. Respecto al área bajo la curva se registraron los siguientes valores en cuanto a mortalidad: INL, 0.594; IML, 0.628 e ILP, 0.505; en cuanto a ventilación mecánica: INL, 0.581; IML, 0.619 e ILP, 0.547. En el análisis univariado, INL > 13 (RM = 2.750, p = 0.001) e IML > 0.5 (RM = 2.069, p = 0.047) se asociaron a mortalidad; ILP no mostró impacto en la mortalidad ni en el soporte respiratorio. CONCLUSIÓN: INL e IML son de utilidad para predecir la mortalidad en pacientes con COVID-19.


Asunto(s)
COVID-19/sangre , COVID-19/mortalidad , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , Estudios de Cohortes , Femenino , Humanos , Recuento de Leucocitos , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Monocitos , Recuento de Plaquetas , Pronóstico , Estudios Retrospectivos
14.
Kidney Int ; 95(2): 455-466, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471880

RESUMEN

Mitochondrial diseases represent a significant clinical challenge. Substantial efforts have been devoted to identifying therapeutic strategies for mitochondrial disorders, but effective interventions have remained elusive. Recently, we reported attenuation of disease in a mouse model of the human mitochondrial disease Leigh syndrome through pharmacological inhibition of the mechanistic target of rapamycin (mTOR). The human mitochondrial disorder MELAS/MIDD (Mitochondrial Encephalopathy with Lactic Acidosis and Stroke-like Episodes/Maternally Inherited Diabetes and Deafness) shares many phenotypic characteristics with Leigh syndrome. MELAS/MIDD often leads to organ failure and transplantation and there are currently no effective treatments. To examine the therapeutic potential of mTOR inhibition in human mitochondrial disease, four kidney transplant recipients with MELAS/MIDD were switched from calcineurin inhibitors to mTOR inhibitors for immunosuppression. Primary fibroblast lines were generated from patient dermal biopsies and the impact of rapamycin was studied using cell-based end points. Metabolomic profiles of the four patients were obtained before and after the switch. pS6, a measure of mTOR signaling, was significantly increased in MELAS/MIDD cells compared to controls in the absence of treatment, demonstrating mTOR overactivation. Rapamycin rescued multiple deficits in cultured cells including mitochondrial morphology, mitochondrial membrane potential, and replicative capacity. Clinical measures of health and mitochondrial disease progression were improved in all four patients following the switch to an mTOR inhibitor. Metabolomic analysis was consistent with mitochondrial function improvement in all patients.


Asunto(s)
Sordera/cirugía , Diabetes Mellitus Tipo 2/cirugía , Rechazo de Injerto/prevención & control , Inmunosupresores/farmacología , Fallo Renal Crónico/cirugía , Trasplante de Riñón/efectos adversos , Síndrome MELAS/cirugía , Enfermedades Mitocondriales/cirugía , Adulto , Aloinjertos/citología , Aloinjertos/efectos de los fármacos , Aloinjertos/patología , Animales , Inhibidores de la Calcineurina/farmacología , Inhibidores de la Calcineurina/uso terapéutico , Células Cultivadas , Sordera/complicaciones , Sordera/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Progresión de la Enfermedad , Femenino , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Humanos , Inmunosupresores/uso terapéutico , Riñón/citología , Riñón/efectos de los fármacos , Riñón/patología , Fallo Renal Crónico/etiología , Fallo Renal Crónico/patología , Síndrome MELAS/complicaciones , Síndrome MELAS/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Cultivo Primario de Células , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/inmunología , Resultado del Tratamiento
16.
Hum Genet ; 136(1): 55-65, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27704213

RESUMEN

While mitochondria have been linked to many human diseases through genetic association and functional studies, the precise role of mitochondria in specific pathologies, such as cardiovascular, neurodegenerative, and metabolic diseases, is often unclear. Here, we take advantage of the catalog of human genome-wide associations, whole-genome tissue expression and expression quantitative trait loci datasets, and annotated mitochondrial proteome databases to examine the role of common genetic variation in mitonuclear genes in human disease. Through pathway-based analysis we identified distinct functional pathways and tissue expression profiles associated with each of the major human diseases. Among our most striking findings, we observe that mitonuclear genes associated with cancer are broadly expressed among human tissues and largely represent one functional process, intrinsic apoptosis, while mitonuclear genes associated with other diseases, such as neurodegenerative and metabolic diseases, show tissue-specific expression profiles and are associated with unique functional pathways. These results provide new insight into human diseases using unbiased genome-wide approaches.


Asunto(s)
Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Alelos , Enfermedades Cardiovasculares/genética , Núcleo Celular/genética , ADN Mitocondrial/genética , Ontología de Genes , Humanos , Inflamación/genética , Enfermedades Metabólicas/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Mapeo de Interacción de Proteínas , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN , Transcriptoma
17.
Sex Med Rev ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879347

RESUMEN

BACKGROUND: One of the less explored effects of diabetes mellitus (DM) is female sexual dysfunction. Females of different species have been used as models. AIM: To analyze the information of animal models of DM and female sexual response (FSR). METHODS: The literature of FSR in models of DM was reviewed. OUTCOMES: Paradigm- and diabetes-dependent changes have been found in various aspects of the FSR. RESULTS: Females in a type 1 DM (DM1) model show a decrease in the number of proestrus events, and ovariectomized females treated with sex hormones have been used. In these females, a reduction in lordosis has been reported; in proceptivity, the data are contradictory. These females present a decrease in sexual motivation that was restored after exogenous insulin. In the type 2 DM (DM2) model, females show regular estrous cycles, normal levels of lordosis behavior, and, depending on the paradigm, decreased proceptivity. These females display normal preference for sexually active males or their olfactory cues when having free physical contact; they lose this preference when tested in paradigms where physical interaction is precluded. CLINICAL TRANSLATION: Preclinical data showing the high deleterious effects of a DM1 model and the less drastic effects under a DM2 model are in accordance with clinical data revealing a much higher prevalence of sexual dysfunction in women with DM1 than DM2. STRENGTHS AND LIMITATIONS: The main strength is the analysis of the changes in various components of FSR in 2 models of DM. The main limitation is the difficulty in extrapolating the data on FSR from rats to women and that most studies focus on evaluating the impact of severe or chronic-moderate hyperglycemia/hyperinsulinemia on the sexual response, without considering other pathophysiologic alterations generated by DM. CONCLUSION: Females with severe hyperglycemia have a decrease in FSR, while those with moderate hyperglycemia show much less drastic effects.

18.
Front Microbiol ; 15: 1358258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559344

RESUMEN

Introduction: SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods: Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results: In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion: We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.

19.
Br J Pharmacol ; 181(15): 2636-2654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38616133

RESUMEN

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Sinergismo Farmacológico , Ribavirina , SARS-CoV-2 , Alanina/análogos & derivados , Alanina/farmacología , Ribavirina/farmacología , Antivirales/farmacología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , SARS-CoV-2/efectos de los fármacos , Chlorocebus aethiops , Células Vero , Animales , Humanos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
20.
Curr Opin Struct Biol ; 79: 102549, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36821888

RESUMEN

The cryo-electron microscopy (cryo-EM) method microcrystal electron diffraction (MicroED) was initially described in 2013 and has recently gained attention as an emerging technique for research in drug discovery. As compared to other methods in structural biology, MicroED provides many advantages deriving from the use of nanocrystalline material for the investigations. Here, we review the recent advancements in the field of MicroED and show important examples of small molecule, peptide and protein structures that has contributed to the current development of this method as an important tool for drug discovery.


Asunto(s)
Electrones , Proteínas , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Proteínas/química , Descubrimiento de Drogas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA